Visible to the public Biblio

Found 299 results

Filters: First Letter Of Title is O  [Clear All Filters]
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
Zhao, Shixiong, Gu, Rui, Qiu, Haoran, Li, Tsz On, Wang, Yuexuan, Cui, Heming, Yang, Junfeng.  2018.  OWL: Understanding and Detecting Concurrency Attacks. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :219-230.
Just like bugs in single-threaded programs can lead to vulnerabilities, bugs in multithreaded programs can also lead to concurrency attacks. We studied 31 real-world concurrency attacks, including privilege escalations, hijacking code executions, and bypassing security checks. We found that compared to concurrency bugs' traditional consequences (e.g., program crashes), concurrency attacks' consequences are often implicit, extremely hard to be observed and diagnosed by program developers. Moreover, in addition to bug-inducing inputs, extra subtle inputs are often needed to trigger the attacks. These subtle features make existing tools ineffective to detect concurrency attacks. To tackle this problem, we present OWL, the first practical tool that models general concurrency attacks' implicit consequences and automatically detects them. We implemented OWL in Linux and successfully detected five new concurrency attacks, including three confirmed and fixed by developers, and two exploited from previously known and well-studied concurrency bugs. OWL has also detected seven known concurrency attacks. Our evaluation shows that OWL eliminates 94.1% of the reports generated by existing concurrency bug detectors as false positive, greatly reducing developers' efforts on diagnosis. All OWL source code, concurrency attack exploit scripts, and results are available on
Qian, K., Parizi, R. M., Lo, D..  2018.  OWASP Risk Analysis Driven Security Requirements Specification for Secure Android Mobile Software Development. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1—2.
The security threats to mobile applications are growing explosively. Mobile apps flaws and security defects open doors for hackers to break in and access sensitive information. Defensive requirements analysis should be an integral part of secure mobile SDLC. Developers need to consider the information confidentiality and data integrity, to verify the security early in the development lifecycle rather than fixing the security holes after attacking and data leaks take place. Early eliminating known security vulnerabilities will help developers increase the security of apps and reduce the likelihood of exploitation. However, many software developers lack the necessary security knowledge and skills at the development stage, and that's why Secure Mobile Software Development education is very necessary for mobile software engineers. In this paper, we propose a guided security requirement analysis based on OWASP Mobile Top ten security risk recommendations for Android mobile software development and its traceability of the developmental controls in SDLC. Building secure apps immune to the OWASP Mobile Top ten risks would be an effective approach to provide very useful mobile security guidelines.
Kiruba, B., Saravanan, V., Vasanth, T., Yogeshwar, B.K..  2022.  OWASP Attack Prevention. 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). :1671–1675.
The advancements in technology can be seen in recent years, and people have been adopting the emerging technologies. Though people rely upon these advancements, many loopholes can be seen if you take a particular field, and attackers are thirsty to steal personal data. There has been an increasing number of cyber threats and breaches happening worldwide, primarily for fun or for ransoms. Web servers and sites of the users are being compromised, and they are unaware of the vulnerabilities. Vulnerabilities include OWASP's top vulnerabilities like SQL injection, Cross-site scripting, and so on. To overcome the vulnerabilities and protect the site from getting down, the proposed work includes the implementation of a Web Application Firewall focused on the Application layer of the OSI Model; the product protects the target web applications from the Common OWASP security vulnerabilities. The Application starts analyzing the incoming and outgoing requests generated from the traffic through the pre-built Application Programming Interface. It compares the request and parameter with the algorithm, which has a set of pre-built regex patterns. The outcome of the product is to detect and reject general OWASP security vulnerabilities, helping to secure the user's business and prevent unauthorized access to sensitive data, respectively.
Kumar, A., Sinha, M..  2014.  Overview on vehicular ad hoc network and its security issues. Computing for Sustainable Global Development (INDIACom), 2014 International Conference on. :792-797.

Vehicular ad-hoc networks (VANETs) provides infrastructure less, rapidly deployable, self-configurable network connectivity. The network is the collection vehicles interlinked by wireless links and willing to store and forward data for their peers. As vehicles move freely and organize themselves arbitrarily, message routing is done dynamically based on network connectivity. Compared with other ad-hoc networks, VANETs are particularly challenging due to the part of the vehicles' high rate of mobility and the numerous signal-weakening barrier, such as buildings, in their environments. Due to their enormous potential, VANET have gained an increasing attention in both industry and academia. Research activities range from lower layer protocol design to applications and implementation issues. A secure VANET system, while exchanging information should protect the system against unauthorized message injection, message alteration, eavesdropping. The security of VANET is one of the most critical issues because their information transmission is propagated in open access (wireless) environments. A few years back VANET has received increased attention as the potential technology to enhance active and preventive safety on the road, as well as travel comfort Safekeeping and privacy are mandatory in vehicular communications for a grateful acceptance and use of such technology. This paper is an attempt to highlight the problems occurred in Vehicular Ad hoc Networks and security issues.

Zhou, X., Lu, Y., Wang, Y., Yan, X..  2018.  Overview on Moving Target Network Defense. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). :821–827.
Moving Target Defense (MTD) is a research hotspot in the field of network security. Moving Target Network Defense (MTND) is the implementation of MTD at network level. Numerous related works have been proposed in the field of MTND. In this paper, we focus on the scope and area of MTND, systematically present the recent representative progress from four aspects, including IP address and port mutation, route mutation, fingerprint mutation and multiple mutation, and put forward the future development directions. Several new perspectives and elucidations on MTND are rendered.
Black, Samuel, Kim, Yoohwan.  2022.  An Overview on Detection and Prevention of Application Layer DDoS Attacks. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0791–0800.
Distributed Denial-of-Service (DDoS) attacks aim to cause downtime or a lack of responsiveness for web services. DDoS attacks targeting the application layer are amongst the hardest to catch as they generally appear legitimate at lower layers and attempt to take advantage of common application functionality or aspects of the HTTP protocol, rather than simply send large amounts of traffic like with volumetric flooding. Attacks can focus on functionality such as database operations, file retrieval, or just general backend code. In this paper, we examine common forms of application layer attacks, preventative and detection measures, and take a closer look specifically at HTTP Flooding attacks by the High Orbit Ion Cannon (HOIC) and “low and slow” attacks through slowloris.
Khujamatov, Halimjon, Lazarev, Amir, Akhmedov, Nurshod, Asenbaev, Nurbek, Bekturdiev, Aybek.  2022.  Overview Of Vanet Network Security. 2022 International Conference on Information Science and Communications Technologies (ICISCT). :1–6.
This article provides an overview of the security of VANET, which is a vehicle network. When reviewing this topic, publications of various researchers were considered. The article provides information security requirements for VANET, an overview of security research, an overview of existing attacks, methods for detecting attacks and appropriate countermeasures against such threats.
Yang, Haonan, Zhong, Yongchao, Yang, Bo, Yang, Yiyu, Xu, Zifeng, Wang, Longjuan, Zhang, Yuqing.  2022.  An Overview of Sybil Attack Detection Mechanisms in VFC. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :117–122.
Vehicular Fog Computing (VFC) has been proposed to address the security and response time issues of Vehicular Ad Hoc Networks (VANETs) in latency-sensitive vehicular network environments, due to the frequent interactions that VANETs need to have with cloud servers. However, the anonymity protection mechanism in VFC may cause the attacker to launch Sybil attacks by fabricating or creating multiple pseudonyms to spread false information in the network, which poses a severe security threat to the vehicle driving. Therefore, in this paper, we summarize different types of Sybil attack detection mechanisms in VFC for the first time, and provide a comprehensive comparison of these schemes. In addition, we also summarize the possible impacts of different types of Sybil attacks on VFC. Finally, we summarize challenges and prospects of future research on Sybil attack detection mechanisms in VFC.
Arvind, S, Narayanan, V Anantha.  2019.  An Overview of Security in CoAP: Attack and Analysis. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :655—660.
Over the last decade, a technology called Internet of Things (IoT) has been evolving at a rapid pace. It enables the development of endless applications in view of availability of affordable components which provide smart ecosystems. The IoT devices are constrained devices which are connected to the internet and perform sensing tasks. Each device is identified by their unique address and also makes use of the Constrained Application Protocol (CoAP) as one of the main web transfer protocols. It is an application layer protocol which does not maintain secure channels to transfer information. For authentication and end-to-end security, Datagram Transport Layer Security (DTLS) is one of the possible approaches to boost the security aspect of CoAP, in addition to which there are many suggested ways to protect the transmission of sensitive information. CoAP uses DTLS as a secure protocol and UDP as a transfer protocol. Therefore, the attacks on UDP or DTLS could be assigned as a CoAP attack. An attack on DTLS could possibly be launched in a single session and a strong authentication mechanism is needed. Man-In-The-Middle attack is one the peak security issues in CoAP as cited by Request For Comments(RFC) 7252, which encompasses attacks like Sniffing, Spoofing, Denial of Service (DoS), Hijacking, Cross-Protocol attacks and other attacks including Replay attacks and Relay attacks. In this work, a client-server architecture is setup, whose end devices communicate using CoAP. Also, a proxy system was installed across the client side to launch an active interception between the client and the server. The work will further be enhanced to provide solutions to mitigate these attacks.
Gafencu, L. P., Scripcariu, L., Bogdan, I..  2017.  An overview of security aspects and solutions in VANETs. 2017 International Symposium on Signals, Circuits and Systems (ISSCS). :1–4.

Because of the nature of vehicular communications, security is a crucial aspect, involving the continuous development and analysis of the existing security architectures and punctual theoretical and practical aspects that have been proposed and are in need of continuous updates and integrations with newer technologies. But before an update, a good knowledge of the current aspects is mandatory. Identifying weaknesses and anticipating possible risks of vehicular communication networks through a failure modes and effects analysis (FMEA) represent an important aspect of the security analysis process and a valuable step in finding efficient security solutions for all kind of problems that might occur in these systems.

Liu, Xuanyu, Cheng, Guozhen, Wang, Yawen, Zhang, Shuai.  2022.  Overview of Scientific Workflow Security Scheduling in Clouds. 2021 International Conference on Advanced Computing and Endogenous Security. :1–6.
With the development of cloud computing technology, more and more scientific researchers choose to deliver scientific workflow tasks to public cloud platforms for execution. This mode effectively reduces scientific research costs while also bringing serious security risks. In response to this problem, this article summarizes the current security issues facing cloud scientific workflows, and analyzes the importance of studying cloud scientific workflow security issues. Then this article analyzes, summarizes and compares the current cloud scientific workflow security methods from three perspectives: system architecture, security model, and security strategy. Finally made a prospect for the future development direction.
Basheer, M. M., Varol, A..  2019.  An Overview of Robot Operating System Forensics. 2019 1st International Informatics and Software Engineering Conference (UBMYK). :1—4.
Autonomous technologies have been rapidly replacing the traditional manual intervention nearly in every aspect of our life. These technologies essentially require robots to carry out their automated processes. Nowadays, with the emergence of industry 4.0, robots are increasingly being remote-controlled via client-server connection, which creates uncommon vulnerabilities that allow attackers to target those robots. The development of an open source operational environment for robots, known as Robot Operating System (ROS) has come as a response to these demands. Security and privacy are crucial for the use of ROS as the chance of a compromise may lead to devastating ramifications. In this paper, an overview of ROS and the attacks targeting it are detailed and discussed. Followed by a review of the ROS security and digital investigation studies.
Deng, Han, Wang, Zhechon, Zhang, Yazhen.  2021.  Overview of Privacy Protection Data Release Anonymity Technology. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :151–156.
The collection of digital information by governments, companies and individuals creates tremendous opportunities for knowledge and information-based decision-making. Driven by mutual benefit and laws and regulations, there is a need for data exchange and publication between all parties. However, data in its original form usually contains sensitive information about individuals and publishing such data would violate personal privacy. Privacy Protection Data Distribution (PPDP) provides methods and tools to release useful information while protecting data privacy. In recent years, PPDP has received extensive attention from the research community, and many solutions have been proposed for different data release scenarios. How to ensure the availability of data under the premise of protecting user privacy is the core problem to be solved in this field. This paper studies the existing achievements of privacy protection data release anonymity technology, focusing on the existing anonymity technology in three aspects of high-dimensional, high-deficiency, and complex relational data, and analyzes and summarizes them.
Pallavi, Sode, Narayanan, V Anantha.  2019.  An Overview of Practical Attacks on BLE Based IOT Devices and Their Security. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :694—698.
BLE is used to transmit and receive data between sensors and devices. Most of the IOT devices employ BLE for wireless communication because it suits their requirements such as less energy constraints. The major security vulnerabilities in BLE protocol can be used by attacker to perform MITM attacks and hence violating confidentiality and integrity of data. Although BLE 4.2 prevents most of the attacks by employing elliptic-curve diffie-Hellman to generate LTK and encrypt the data, still there are many devices in the market that are using BLE 4.0, 4.1 which are vulnerable to attacks. This paper shows the simple demonstration of possible attacks on BLE devices that use various existing tools to perform spoofing, MITM and firmware attacks. We also discussed the security, privacy and its importance in BLE devices.
Sun, Bin, Cheng, Wei, Goswami, Prashant, Bai, Guohua.  2017.  An Overview of Parameter and Data Strategies for k-Nearest Neighbours Based Short-Term Traffic Prediction. Proceedings of the 2017 International Conference on E-Society, E-Education and E-Technology. :68–74.
Modern intelligent transportation systems (ITS) requires reliable and accurate short-term traffic prediction. One widely used method to predict traffic is k-nearest neighbours (kNN). Though many studies have tried to improve kNN with parameter strategies and data strategies, there is no comprehensive analysis of those strategies. This paper aims to analyse kNN strategies and guide future work to select the right strategy to improve prediction accuracy. Firstly, we examine the relations among three kNN parameters, which are: number of nearest neighbours (k), search step length (d) and window size (v). We also analysed predict step ahead (m) which is not a parameter but a user requirement and configuration. The analyses indicate that the relations among parameters are compound especially when traffic flow states are considered. The results show that strategy of using v leads to outstanding accuracy improvement. Later, we compare different data strategies such as flow-aware and time-aware ones together with ensemble strategies. The experiments show that the flow-aware strategy performs better than the time-aware one. Thus, we suggest considering all parameter strategies simultaneously as ensemble strategies especially by including v in flow-aware strategies.
Atasever, Süreyya, Öz\c celık, İlker, Sa\u giro\u glu, \c Seref.  2020.  An Overview of Machine Learning Based Approaches in DDoS Detection. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1–4.
Many detection approaches have been proposed to address growing threat of Distributed Denial of Service (DDoS) attacks on the Internet. The attack detection is the initial step in most of the mitigation systems. This study examined the methods used to detect DDoS attacks with the focus on learning based approaches. These approaches were compared based on their efficiency, operating load and scalability. Finally, it is discussed in details.
d Krit, S., Haimoud, E..  2017.  Overview of Firewalls: Types and Policies: Managing Windows Embedded Firewall Programmatically. 2017 International Conference on Engineering MIS (ICEMIS). :1–7.

Due to the increasing threat of network attacks, Firewall has become crucial elements in network security, and have been widely deployed in most businesses and institutions for securing private networks. The function of a firewall is to examine each packet that passes through it and decide whether to letting them pass or halting them based on preconfigured rules and policies, so firewall now is the first defense line against cyber attacks. However most of people doesn't know how firewall works, and the most users of windows operating system doesn't know how to use the windows embedded firewall. This paper explains how firewall works, firewalls types, and all you need to know about firewall policies, then presents a novel application (QudsWall) developed by authors that manages windows embedded firewall and make it easy to use.

Dong, Yeting, Wang, Zhiwen, Guo, Wuyuan.  2022.  Overview of edge detection algorithms based on mathematical morphology. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC ). :1321—1326.
Edge detection is the key and difficult point of machine vision and image processing technology. The traditional edge detection algorithm is sensitive to noise and it is difficult to accurately extract the edge of the image, so the effect of image processing is not ideal. To solve this problem, people in the industry use the structural element features of morphological edge detection operator to extract the edge features of the image by carefully designing and combining the structural elements of different sizes and directions, so as to effectively ensure the integrity of edge information in all directions and eliminate large noise at the same time. This paper first introduces the traditional edge detection algorithms, then summarizes the edge detection algorithms based on mathematical morphology in recent years, finds that the selection of multi-scale and multi-directional structural elements is an important research direction, and finally discusses the development trend of mathematical morphology edge detection technology.
Irmak, E., Erkek, İ.  2018.  An overview of cyber-attack vectors on SCADA systems. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–5.

Most of the countries evaluate their energy networks in terms of national security and define as critical infrastructure. Monitoring and controlling of these systems are generally provided by Industrial Control Systems (ICSs) and/or Supervisory Control and Data Acquisition (SCADA) systems. Therefore, this study focuses on the cyber-attack vectors on SCADA systems to research the threats and risks targeting them. For this purpose, TCP/IP based protocols used in SCADA systems have been determined and analyzed at first. Then, the most common cyber-attacks are handled systematically considering hardware-side threats, software-side ones and the threats for communication infrastructures. Finally, some suggestions are given.

Ochian, A., Suciu, G., Fratu, O., Voicu, C., Suciu, V..  2014.  An overview of cloud middleware services for interconnection of healthcare platforms. Communications (COMM), 2014 10th International Conference on. :1-4.

Using heterogeneous clouds has been considered to improve performance of big-data analytics for healthcare platforms. However, the problem of the delay when transferring big-data over the network needs to be addressed. The purpose of this paper is to analyze and compare existing cloud computing environments (PaaS, IaaS) in order to implement middleware services. Understanding the differences and similarities between cloud technologies will help in the interconnection of healthcare platforms. The paper provides a general overview of the techniques and interfaces for cloud computing middleware services, and proposes a cloud architecture for healthcare. Cloud middleware enables heterogeneous devices to act as data sources and to integrate data from other healthcare platforms, but specific APIs need to be developed. Furthermore, security and management problems need to be addressed, given the heterogeneous nature of the communication and computing environment. The present paper fills a gap in the electronic healthcare register literature by providing an overview of cloud computing middleware services and standardized interfaces for the integration with medical devices.

Dong, X., Hu, J., Cui, Y..  2018.  Overview of Botnet Detection Based on Machine Learning. 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :476-479.

With the rapid development of the information industry, the applications of Internet of things, cloud computing and artificial intelligence have greatly affected people's life, and the network equipment has increased with a blowout type. At the same time, more complex network environment has also led to a more serious network security problem. The traditional security solution becomes inefficient in the new situation. Therefore, it is an important task for the security industry to seek technical progress and improve the protection detection and protection ability of the security industry. Botnets have been one of the most important issues in many network security problems, especially in the last one or two years, and China has become one of the most endangered countries by botnets, thus the huge impact of botnets in the world has caused its detection problems to reset people's attention. This paper, based on the topic of botnet detection, focuses on the latest research achievements of botnet detection based on machine learning technology. Firstly, it expounds the application process of machine learning technology in the research of network space security, introduces the structure characteristics of botnet, and then introduces the machine learning in botnet detection. The security features of these solutions and the commonly used machine learning algorithms are emphatically analyzed and summarized. Finally, it summarizes the existing problems in the existing solutions, and the future development direction and challenges of machine learning technology in the research of network space security.

Freet, David, Agrawal, Rajeev.  2016.  An Overview of Architectural and Security Considerations for Named Data Networking (NDN). Proceedings of the 8th International Conference on Management of Digital EcoSystems. :52–57.

The Internet of Things (IoT) is an emerging architecture that seeks to interconnect all of the "things" we use on a daily basis. Whereas the Internet originated as a way to connect traditional computing devices in order to share information, IoT includes everything from automobiles to appliances to buildings. As networks and devices become more diverse and disparate in their communication methods and interfaces, traditional host-to host technologies such as Internet Protocol (IP) are challenged to provide the level of data exchange and security needed to operate in this new network paradigm. Named Data Networking (NDN) is a developing Internet architecture that can help implement the IoT paradigm in a more efficient and secure manner. This paper introduces the NDN architecture in comparison to the traditional IP-based architecture and discusses several security concepts pertaining to NDN that make this a powerful technology for implementing the Internet of Things.

Zhang, Qixin.  2021.  An Overview and Analysis of Hybrid Encryption: The Combination of Symmetric Encryption and Asymmetric Encryption. 2021 2nd International Conference on Computing and Data Science (CDS). :616–622.
In the current scenario, various forms of information are spread everywhere, especially through the Internet. A lot of valuable information is contained in the dissemination, so security issues have always attracted attention. With the emergence of cryptographic algorithms, information security has been further improved. Generally, cryptography encryption is divided into symmetric encryption and asymmetric encryption. Although symmetric encryption has a very fast computation speed and is beneficial to encrypt a large amount of data, the security is not as high as asymmetric encryption. The same pair of keys used in symmetric algorithms leads to security threats. Thus, if the key can be protected, the security could be improved. Using an asymmetric algorithm to protect the key and encrypting the message with a symmetric algorithm would be a good choice. This paper will review security issues in the information transmission and the method of hybrid encryption algorithms that will be widely used in the future. Also, the various characteristics of algorithms in different systems and some typical cases of hybrid encryption will be reviewed and analyzed to showcase the reinforcement by combining algorithms. Hybrid encryption algorithms will improve the security of the transmission without causing more other problems. Additionally, the way how the encryption algorithms combine to strength the security will be discussed with the aid of an example.
Kim, Brian, Sagduyu, Yalin E., Davaslioglu, Kemal, Erpek, Tugba, Ulukus, Sennur.  2020.  Over-the-Air Adversarial Attacks on Deep Learning Based Modulation Classifier over Wireless Channels. 2020 54th Annual Conference on Information Sciences and Systems (CISS). :1—6.
We consider a wireless communication system that consists of a transmitter, a receiver, and an adversary. The transmitter transmits signals with different modulation types, while the receiver classifies its received signals to modulation types using a deep learning-based classifier. In the meantime, the adversary makes over-the-air transmissions that are received as superimposed with the transmitter's signals to fool the classifier at the receiver into making errors. While this evasion attack has received growing interest recently, the channel effects from the adversary to the receiver have been ignored so far such that the previous attack mechanisms cannot be applied under realistic channel effects. In this paper, we present how to launch a realistic evasion attack by considering channels from the adversary to the receiver. Our results show that modulation classification is vulnerable to an adversarial attack over a wireless channel that is modeled as Rayleigh fading with path loss and shadowing. We present various adversarial attacks with respect to availability of information about channel, transmitter input, and classifier architecture. First, we present two types of adversarial attacks, namely a targeted attack (with minimum power) and non-targeted attack that aims to change the classification to a target label or to any other label other than the true label, respectively. Both are white-box attacks that are transmitter input-specific and use channel information. Then we introduce an algorithm to generate adversarial attacks using limited channel information where the adversary only knows the channel distribution. Finally, we present a black-box universal adversarial perturbation (UAP) attack where the adversary has limited knowledge about both channel and transmitter input. By accounting for different levels of information availability, we show the vulnerability of modulation classifier to over-the-air adversarial attacks.
Wu, Sha, Liu, Jiajia.  2019.  Overprivileged Permission Detection for Android Applications. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Android applications (Apps) have penetrated almost every aspect of our lives, bring users great convenience as well as security concerns. Even though Android system adopts permission mechanism to restrict Apps from accessing important resources of a smartphone, such as telephony, camera and GPS location, users face still significant risk of privacy leakage due to the overprivileged permissions. The overprivileged permission means the extra permission declared by the App but has nothing to do with its function. Unfortunately, there doesn't exist any tool for ordinary users to detect the overprivileged permission of an App, hence most users grant any permission declared by the App, intensifying the risk of private information leakage. Although some previous studies tried to solve the problem of permission overprivilege, their methods are not applicable nowadays because of the progress of App protection technology and the update of Android system. Towards this end, we develop a user-friendly tool based on frequent item set mining for the detection of overprivileged permissions of Android Apps, which is named Droidtector. Droidtector can operate in online or offline mode and users can choose any mode according to their situation. Finally, we run Droidtector on 1000 Apps crawled from Google Play and find that 479 of them are overprivileged, accounting for about 48% of all the sample Apps.