Visible to the public Biblio

Filters: First Letter Of Title is Q  [Clear All Filters]
A B C D E F G H I J K L M N O P [Q] R S T U V W X Y Z   [Show ALL]
AL-Mubayedh, Dhoha, AL-Khalis, Mashael, AL-Azman, Ghadeer, AL-Abdali, Manal, Al Fosail, Malak, Nagy, Naya.  2019.  Quantum Cryptography on IBM QX. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.

Due to the importance of securing electronic transactions, many cryptographic protocols have been employed, that mainly depend on distributed keys between the intended parties. In classical computers, the security of these protocols depends on the mathematical complexity of the encoding functions and on the length of the key. However, the existing classical algorithms 100% breakable with enough computational power, which can be provided by quantum machines. Moving to quantum computation, the field of security shifts into a new area of cryptographic solutions which is now the field of quantum cryptography. The era of quantum computers is at its beginning. There are few practical implementations and evaluations of quantum protocols. Therefore, the paper defines a well-known quantum key distribution protocol which is BB84 then provides a practical implementation of it on IBM QX software. The practical implementations showed that there were differences between BB84 theoretical expected results and the practical implementation results. Due to this, the paper provides a statistical analysis of the experiments by comparing the standard deviation of the results. Using the BB84 protocol the existence of a third-party eavesdropper can be detected. Thus, calculations of the probability of detecting/not detecting a third-party eavesdropping have been provided. These values are again compared to the theoretical expectation. The calculations showed that with the greater number of qubits, the percentage of detecting eavesdropper will be higher.

Ablaev, Farid, Andrianov, Sergey, Soloviev, Aleksey.  2019.  Quantum Electronic Generator of Random Numbers for Information Security in Automatic Control Systems. 2019 International Russian Automation Conference (RusAutoCon). :1–5.

The problems of random numbers application to the information security of data, communication lines, computer units and automated driving systems are considered. The possibilities for making up quantum generators of random numbers and existing solutions for acquiring of sufficiently random sequences are analyzed. The authors found out the method for the creation of quantum generators on the basis of semiconductor electronic components. The electron-quantum generator based on electrons tunneling is experimentally demonstrated. It is shown that it is able to create random sequences of high security level and satisfying known NIST statistical tests (P-Value\textbackslashtextgreater0.9). The generator created can be used for formation of both closed and open cryptographic keys in computer systems and other platforms and has great potential for realization of random walks and probabilistic computing on the basis of neural nets and other IT problems.

Almazrooie, Mishal, Abdullah, Rosni, Samsudin, Azman, Mutter, Kussay N..  2018.  Quantum Grover Attack on the Simplified-AES. Proceedings of the 2018 7th International Conference on Software and Computer Applications. :204–211.

In this work, a quantum design for the Simplified-Advanced Encryption Standard (S-AES) algorithm is presented. Also, a quantum Grover attack is modeled on the proposed quantum S-AES. First, quantum circuits for the main components of S-AES in the finite field F2[x]/(x4 + x + 1), are constructed. Then, the constructed circuits are put together to form a quantum version of S-AES. A C-NOT synthesis is used to decompose some of the functions to reduce the number of the needed qubits. The quantum S-AES is integrated into a black-box queried by Grover's algorithm. A new approach is proposed to uniquely recover the secret key when Grover attack is applied. The entire work is simulated and tested on a quantum mechanics simulator. The complexity analysis shows that a block cipher can be designed as a quantum circuit with a polynomial cost. In addition, the secret key is recovered in quadratic speedup as promised by Grover's algorithm.

Zhang, Y., Liu, J., Shang, T., Wu, W..  2020.  Quantum Homomorphic Encryption Based on Quantum Obfuscation. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2010–2015.
Homomorphic encryption enables computation on encrypted data while maintaining secrecy. This leads to an important open question whether quantum computation can be delegated and verified in a non-interactive manner or not. In this paper, we affirmatively answer this question by constructing the quantum homomorphic encryption scheme with quantum obfuscation. It takes advantage of the interchangeability of the unitary operator, and exchanges the evaluation operator and the encryption operator by means of equivalent multiplication to complete homomorphic encryption. The correctness of the proposed scheme is proved theoretically. The evaluator does not know the decryption key and does not require a regular interaction with a user. Because of key transmission after quantum obfuscation, the encrypting party and the decrypting party can be different users. The output state has the property of complete mixture, which guarantees the scheme security. Moreover, the security level of the quantum homomorphic encryption scheme depends on quantum obfuscation and encryption operators.
Rahman, M. S., Hossam-E-Haider, M..  2019.  Quantum IoT: A Quantum Approach in IoT Security Maintenance. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :269–272.

Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.

Shapiro, Jeffrey H., Boroson, Don M., Dixon, P. Ben, Grein, Matthew E., Hamilton, Scott A..  2019.  Quantum Low Probability of Intercept. 2019 Conference on Lasers and Electro-Optics (CLEO). :1—2.

Quantum low probability of intercept transmits ciphertext in a way that prevents an eavesdropper possessing the decryption key from recovering the plaintext. It is capable of Gbps communication rates on optical fiber over metropolitan-area distances.

Brito, J. P., López, D. R., Aguado, A., Abellán, C., López, V., Pastor-Perales, A., la Iglesia, F. de, Martín, V..  2019.  Quantum Services Architecture in Softwarized Infrastructures. 2019 21st International Conference on Transparent Optical Networks (ICTON). :1–4.
Quantum computing is posing new threats on our security infrastructure. This has triggered a new research field on quantum-safe methods, and those that rely on the application of quantum principles are commonly referred as quantum cryptography. The most mature development in the field of quantum cryptography is called Quantum Key Distribution (QKD). QKD is a key exchange primitive that can replace existing mechanisms that can become obsolete in the near future. Although QKD has reached a high level of maturity, there is still a long path for a mass market implementation. QKD shall overcome issues such as miniaturization, network integration and the reduction of production costs to make the technology affordable. In this direction, we foresee that QKD systems will evolve following the same path as other networking technologies, where systems will run on specific network cards, integrable in commodity chassis. This work describes part of our activity in the EU H2020 project CiViQ in which quantum technologies, as QKD systems or quantum random number generators (QRNG), will become a single network element that we define as Quantum Switch. This allows for quantum resources (keys or random numbers) to be provided as a service, while the different components are integrated to cooperate for providing the most random and secure bit streams. Furthermore, with the purpose of making our proposal closer to current networking technology, this work also proposes an abstraction logic for making our Quantum Switch suitable to become part of software-defined networking (SDN) architectures. The model fits in the architecture of the SDN quantum node architecture, that is being under standardization by the European Telecommunications Standards Institute. It permits to operate an entire quantum network using a logically centralized SDN controller, and quantum switches to generate and to forward key material and random numbers across the entire network. This scheme, demonstrated for the first time at the Madrid Quantum Network, will allow for a faster and seamless integration of quantum technologies in the telecommunications infrastructure.
Lardier, W., Varo, Q., Yan, J..  2019.  Quantum-Sim: An Open-Source Co-Simulation Platform for Quantum Key Distribution-Based Smart Grid Communications. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
Grid modernization efforts with the latest information and communication technologies will significantly benefit smart grids in the coming years. More optical fibre communications between consumers and the control center will promise better demand response and customer engagement, yet the increasing attack surface and man-in-the-middle (MITM) threats can result in security and privacy challenges. Among the studies for more secure smart grid communications, quantum key distribution protocols (QKD) have emerged as a promising option. To bridge the theoretical advantages of quantum communication to its practical utilization, however, comprehensive investigations have to be conducted with realistic cyber-physical smart grid structures and scenarios. To facilitate research in this direction, this paper proposes an open-source, research-oriented co-simulation platform that orchestrates cyber and power simulators under the MOSAIK framework. The proposed platform allows flexible and realistic power flow-based co-simulation of quantum communications and electrical grids, where different cyber and power topologies, QKD protocols, and attack threats can be investigated. Using quantum-based communication under MITM attacks, the paper presented detailed case studies to demonstrate how the platform enables quick setup of a lowvoltage distribution grid, implementation of different protocols and cryptosystems, as well as evaluations of both communication efficiency and security against MITM attacks. The platform has been made available online to empower researchers in the modelling of quantum-based cyber-physical systems, pilot studies on quantum communications in smart grid, as well as improved attack resilience against malicious intruders.
Timothy Bretl, University of Illinois at Urbana-Champaign, Zoe McCarthy, University of Illinois at Urbana-Champaign.  2014.  Quasi-Static Manipulation of a Kirchhoff Elastic Road Based on a Geometric Analysis of Equilibrium Configurations. International Journal of Robotics Research. 33(1)

Consider a thin, flexible wire of fixed length that is held at each end by a robotic gripper. Any curve traced by this wire when in static equilibrium is a local solution to a geometric optimal control problem, with boundary conditions that vary with the position and orientation of each gripper. We prove that the set of all local solutions to this problem over all possible boundary conditions is a smooth manifold of finite dimension that can be parameterized by a single chart. We show that this chart makes it easy to implement a sampling-based algorithm for quasi-static manipulation planning. We characterize the performance of such an algorithm with experiments in simulation.

Timothy Bretl, University of Illinois at Urbana-Champaign, Zoe McCarthy, University of Illinois at Urbana-Champaign.  2013.  Quasi-Static Manipulation of a Kirchhoff Elastic Road Based on Geometric Analysis of Equilibrium Configurations. The International Journal of Robotics Research. 33(1)

Consider a thin, flexible wire of fixed length that is held at each end by a robotic gripper. Any curve traced by this wire when in static equilibrium is a local solution to a geometric optimal control problem, with boundary conditions that vary with the position and orientation of each gripper. We prove that the set of all local solutions to this problem over all possible boundary conditions is a smooth manifold of finite dimension that can be parameterized by a single chart. We show that this chart makes it easy to implement a sampling-based algorithm for quasi-static manipulation planning. We characterize the performance of such an algorithm with experiments in simulation.

Published in The International Journal of Robotics Research

Luowei Zhou, Sucheng Liu, Weiguo Lu, Shuchang Hu.  2014.  Quasi-steady-state large-signal modelling of DC #8211;DC switching converter: justification and application for varying operating conditions. Power Electronics, IET. 7:2455-2464.

Quasi-steady-state (QSS) large-signal models are often taken for granted in the analysis and design of DC-DC switching converters, particularly for varying operating conditions. In this study, the premise for the QSS is justified quantitatively for the first time. Based on the QSS, the DC-DC switching converter under varying operating conditions is reduced to the linear time varying systems model. Thereafter, the QSS concept is applied to analysis of frequency-domain properties of the DC-DC switching converters by using three-dimensional Bode plots, which is then utilised to the optimisation of the controller parameters for wide variations of input voltage and load resistance. An experimental prototype of an average-current-mode-controlled boost DC-DC converter is built to verify the analysis and design by both frequency-domain and time-domain measurements.

Shen, M., Liu, F..  2015.  Query of Uncertain QoS of Web Service. 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associate. :1780–1785.

Quality of service (QoS) has been considered as a significant criterion for querying among functionally similar web services. Most researches focus on the search of QoS under certain data which may not cover some practical scenarios. Recent approaches for uncertain QoS of web service deal with discrete data domain. In this paper, we try to build the search of QoS under continuous probability distribution. We offer the definition of two kinds of queries under uncertain QoS and form the optimization approaches for specific distributions. Based on that, the search is extended to general cases. With experiments, we show the feasibility of the proposed methods.

Pengcheng, Li, Yi, Jinfeng, Zhang, Lijun.  2018.  Query-Efficient Black-Box Attack by Active Learning. 2018 IEEE International Conference on Data Mining (ICDM). :1200–1205.
Deep neural network (DNN) as a popular machine learning model is found to be vulnerable to adversarial attack. This attack constructs adversarial examples by adding small perturbations to the raw input, while appearing unmodified to human eyes but will be misclassified by a well-trained classifier. In this paper, we focus on the black-box attack setting where attackers have almost no access to the underlying models. To conduct black-box attack, a popular approach aims to train a substitute model based on the information queried from the target DNN. The substitute model can then be attacked using existing white-box attack approaches, and the generated adversarial examples will be used to attack the target DNN. Despite its encouraging results, this approach suffers from poor query efficiency, i.e., attackers usually needs to query a huge amount of times to collect enough information for training an accurate substitute model. To this end, we first utilize state-of-the-art white-box attack methods to generate samples for querying, and then introduce an active learning strategy to significantly reduce the number of queries needed. Besides, we also propose a diversity criterion to avoid the sampling bias. Our extensive experimental results on MNIST and CIFAR-10 show that the proposed method can reduce more than 90% of queries while preserve attacking success rates and obtain an accurate substitute model which is more than 85% similar with the target oracle.
Liu, Yin, Song, Zheng, Tilevich, Eli.  2017.  Querying Invisible Objects: Supporting Data-Driven, Privacy-Preserving Distributed Applications. Proceedings of the 14th International Conference on Managed Languages and Runtimes. :60–72.

When transferring sensitive data to a non-trusted party, end-users require that the data be kept private. Mobile and IoT application developers want to leverage the sensitive data to provide better user experience and intelligent services. Unfortunately, existing programming abstractions make it impossible to reconcile these two seemingly conflicting objectives. In this paper, we present a novel programming mechanism for distributed managed execution environments that hides sensitive user data, while enabling developers to build powerful and intelligent applications, driven by the properties of the sensitive data. Specifically, the sensitive data is never revealed to clients, being protected by the runtime system. Our abstractions provide declarative and configurable data query interfaces, enforced by a lightweight distributed runtime system. Developers define when and how clients can query the sensitive data's properties (i.e., how long the data remains accessible, how many times its properties can be queried, which data query methods apply, etc.). Based on our evaluation, we argue that integrating our novel mechanism with the Java Virtual Machine (JVM) can address some of the most pertinent privacy problems of IoT and mobile applications.

Wu, Yifan, Drucker, Steven, Philipose, Matthai, Ravindranath, Lenin.  2018.  Querying Videos Using DNN Generated Labels. Proceedings of the Workshop on Human-In-the-Loop Data Analytics. :6:1–6:6.
Massive amounts of videos are generated for entertainment, security, and science, powered by a growing supply of user-produced video hosting services. Unfortunately, searching for videos is difficult due to the lack of content annotations. Recent breakthroughs in image labeling with deep neural networks (DNNs) create a unique opportunity to address this problem. While many automated end-to-end solutions have been developed, such as natural language queries, we take on a different perspective: to leverage both the development of algorithms and human capabilities. To this end, we design a query language in tandem with a user interface to help users quickly identify segments of interest from the video based on labels and corresponding bounding boxes. We combine techniques from the database and information visualization communities to help the user make sense of the object labels in spite of errors and inconsistencies.
Michel, François, De Coninck, Quentin, Bonaventure, Olivier.  2019.  QUIC-FEC: Bringing the benefits of Forward Erasure Correction to QUIC. 2019 IFIP Networking Conference (IFIP Networking). :1—9.

Originally implemented by Google, QUIC gathers a growing interest by providing, on top of UDP, the same service as the classical TCP/TLS/HTTP/2 stack. The IETF will finalise the QUIC specification in 2019. A key feature of QUIC is that almost all its packets, including most of its headers, are fully encrypted. This prevents eavesdropping and interferences caused by middleboxes. Thanks to this feature and its clean design, QUIC is easier to extend than TCP. In this paper, we revisit the reliable transmission mechanisms that are included in QUIC. More specifically, we design, implement and evaluate Forward Erasure Correction (FEC) extensions to QUIC. These extensions are mainly intended for high-delays and lossy communications such as In-Flight Communications. Our design includes a generic FEC frame and our implementation supports the XOR, Reed-Solomon and Convolutional RLC error-correcting codes. We also conservatively avoid hindering the loss-based congestion signal by distinguishing the packets that have been received from the packets that have been recovered by the FEC. We evaluate its performance by applying an experimental design covering a wide range of delay and packet loss conditions with reproducible experiments. These confirm that our modular design allows the protocol to adapt to the network conditions. For long data transfers or when the loss rate and delay are small, the FEC overhead negatively impacts the download completion time. However, with high packet loss rates and long delays or smaller files, FEC allows drastically reducing the download completion time by avoiding costly retransmission timeouts. These results show that there is a need to use FEC adaptively to the network conditions.

Xie, Kun, Li, Xiaocan, Wang, Xin, Xie, Gaogang, Xie, Dongliang, Li, Zhenyu, Wen, Jigang, Diao, Zulong.  2019.  Quick and Accurate False Data Detection in Mobile Crowd Sensing. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :2215—2223.

With the proliferation of smartphones, a novel sensing paradigm called Mobile Crowd Sensing (MCS) has emerged very recently. However, the attacks and faults in MCS cause a serious false data problem. Observing the intrinsic low dimensionality of general monitoring data and the sparsity of false data, false data detection can be performed based on the separation of normal data and anomalies. Although the existing separation algorithm based on Direct Robust Matrix Factorization (DRMF) is proven to be effective, requiring iteratively performing Singular Value Decomposition (SVD) for low-rank matrix approximation would result in a prohibitively high accumulated computation cost when the data matrix is large. In this work, we observe the quick false data location feature from our empirical study of DRMF, based on which we propose an intelligent Light weight Low Rank and False Matrix Separation algorithm (LightLRFMS) that can reuse the previous result of the matrix decomposition to deduce the one for the current iteration step. Our algorithm can largely speed up the whole iteration process. From a theoretical perspective, we validate that LightLRFMS only requires one round of SVD computation and thus has very low computation cost. We have done extensive experiments using a PM 2.5 air condition trace and a road traffic trace. Our results demonstrate that LightLRFMS can achieve very good false data detection performance with the same highest detection accuracy as DRMF but with up to 10 times faster speed thanks to its lower computation cost.

Ullah, Faheem, Ali Babar, M..  2019.  QuickAdapt: Scalable Adaptation for Big Data Cyber Security Analytics. 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS). :81–86.
Big Data Cyber Security Analytics (BDCA) leverages big data technologies for collecting, storing, and analyzing a large volume of security events data to detect cyber-attacks. Accuracy and response time, being the most important quality concerns for BDCA, are impacted by changes in security events data. Whilst it is promising to adapt a BDCA system's architecture to the changes in security events data for optimizing accuracy and response time, it is important to consider large search space of architectural configurations. Searching a large space of configurations for potential adaptation incurs an overwhelming adaptation time, which may cancel the benefits of adaptation. We present an adaptation approach, QuickAdapt, to enable quick adaptation of a BDCA system. QuickAdapt uses descriptive statistics (e.g., mean and variance) of security events data and fuzzy rules to (re) compose a system with a set of components to ensure optimal accuracy and response time. We have evaluated QuickAdapt for a distributed BDCA system using four datasets. Our evaluation shows that on average QuickAdapt reduces adaptation time by 105× with a competitive adaptation accuracy of 70% as compared to an existing solution.
Sahabandu, D., Allen, J., Moothedath, S., Bushnell, L., Lee, W., Poovendran, R..  2020.  Quickest Detection of Advanced Persistent Threats: A Semi-Markov Game Approach. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :9—19.
Advanced Persistent Threats (APTs) are stealthy, sophisticated, long-term, multi-stage attacks that threaten the security of sensitive information. Dynamic Information Flow Tracking (DIFT) has been proposed as a promising mechanism to detect and prevent various cyber attacks in computer systems. DIFT tracks suspicious information flows in the system and generates security analysis when anomalous behavior is detected. The number of information flows in a system is typically large and the amount of resources (such as memory, processing power and storage) required for analyzing different flows at different system locations varies. Hence, efficient use of resources is essential to maintain an acceptable level of system performance when using DIFT. On the other hand, the quickest detection of APTs is crucial as APTs are persistent and the damage caused to the system is more when the attacker spends more time in the system. We address the problem of detecting APTs and model the trade-off between resource efficiency and quickest detection of APTs. We propose a game model that captures the interaction of APT and a DIFT-based defender as a two-player, multi-stage, zero-sum, Stackelberg semi-Markov game. Our game considers the performance parameters such as false-negatives generated by DIFT and the time required for executing various operations in the system. We propose a two-time scale Q-learning algorithm that converges to a Stackelberg equilibrium under infinite horizon, limiting average payoff criteria. We validate our model and algorithm on a real-word attack dataset obtained using Refinable Attack INvestigation (RAIN) framework.
Zhang, Jiangfan.  2019.  Quickest Detection of Time-Varying False Data Injection Attacks in Dynamic Smart Grids. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2432-2436.

Quickest detection of false data injection attacks (FDIAs) in dynamic smart grids is considered in this paper. The unknown time-varying state variables of the smart grid and the FDIAs impose a significant challenge for designing a computationally efficient detector. To address this challenge, we propose new Cumulative-Sum-type algorithms with computational complex scaling linearly with the number of meters. Moreover, for any constraint on the expected false alarm period, a lower bound on the threshold employed in the proposed algorithm is provided. For any given threshold employed in the proposed algorithm, an upper bound on the worstcase expected detection delay is also derived. The proposed algorithm is numerically investigated in the context of an IEEE standard power system under FDIAs, and is shown to outperform some representative algorithm in the test case.