Visible to the public Biblio

Found 1545 results

Filters: First Letter Of Title is S  [Clear All Filters]
Journal Article
Cao, L., Kang, Y., Wu, Q., Wu, R., Guo, X., Feng, T..  2020.  Searchable encryption cloud storage with dynamic data update to support efficient policy hiding. China Communications. 17:153–163.
Ciphertext policy attribute based encryption (CP-ABE) can provide high finegrained access control for cloud storage. However, it needs to solve problems such as property privacy protection, ciphertext search and data update in the application process. Therefore, based on CP-ABE scheme, this paper proposes a dynamically updatable searchable encryption cloud storage (DUSECS) scheme. Using the characteristics of homomorphic encryption, the encrypted data is compared to achieve efficient hiding policy. Meanwhile, adopting linked list structure, the DUSECS scheme realizes the dynamic data update and integrity detection, and the search encryption against keyword guessing attacks is achieved by combining homomorphic encryption with aggregation algorithm. The analysis of security and performance shows that the scheme is secure and efficient.
Poh, Geong Sen, Chin, Ji-Jian, Yau, Wei-Chuen, Choo, Kim-Kwang Raymond, Mohamad, Moesfa Soeheila.  2017.  Searchable Symmetric Encryption: Designs and Challenges. ACM Comput. Surv.. 50:40:1–40:37.
Searchable Symmetric Encryption (SSE) when deployed in the cloud allows one to query encrypted data without the risk of data leakage. Despite the widespread interest, existing surveys do not examine in detail how SSE’s underlying structures are designed and how these result in the many properties of a SSE scheme. This is the gap we seek to address, as well as presenting recent state-of-the-art advances on SSE. Specifically, we present a general framework and believe the discussions may lead to insights for potential new designs. We draw a few observations. First, most schemes use index table, where optimal index size and sublinear search can be achieved using an inverted index. Straightforward updating can only be achieved using direct index, but search time would be linear. A recent trend is the combinations of index table, and tree, deployed for efficient updating and storage. Secondly, mechanisms from related fields such as Oblivious RAM (ORAM) have been integrated to reduce leakages. However, using these mechanisms to minimise leakages in schemes with richer functionalities (e.g., ranked, range) is relatively unexplored. Thirdly, a new approach (e.g., multiple servers) is required to mitigate new and emerging attacks on leakage. Lastly, we observe that a proposed index may not be practically efficient when implemented, where I/O access must be taken into consideration.
Qin, Zhan, Yan, Jingbo, Ren, Kui, Chen, Chang Wen, Wang, Cong.  2016.  SecSIFT: Secure Image SIFT Feature Extraction in Cloud Computing. ACM Trans. Multimedia Comput. Commun. Appl.. 12:65:1–65:24.

The image and multimedia data produced by individuals and enterprises is increasing every day. Motivated by the advances in cloud computing, there is a growing need to outsource such computational intensive image feature detection tasks to cloud for its economic computing resources and on-demand ubiquitous access. However, the concerns over the effective protection of private image and multimedia data when outsourcing it to cloud platform become the major barrier that impedes the further implementation of cloud computing techniques over massive amount of image and multimedia data. To address this fundamental challenge, we study the state-of-the-art image feature detection algorithms and focus on Scalar Invariant Feature Transform (SIFT), which is one of the most important local feature detection algorithms and has been broadly employed in different areas, including object recognition, image matching, robotic mapping, and so on. We analyze and model the privacy requirements in outsourcing SIFT computation and propose Secure Scalar Invariant Feature Transform (SecSIFT), a high-performance privacy-preserving SIFT feature detection system. In contrast to previous works, the proposed design is not restricted by the efficiency limitations of current homomorphic encryption scheme. In our design, we decompose and distribute the computation procedures of the original SIFT algorithm to a set of independent, co-operative cloud servers and keep the outsourced computation procedures as simple as possible to avoid utilizing a computationally expensive homomorphic encryption scheme. The proposed SecSIFT enables implementation with practical computation and communication complexity. Extensive experimental results demonstrate that SecSIFT performs comparably to original SIFT on image benchmarks while capable of preserving the privacy in an efficient way.

Farooq, M. J., Zhu, Q..  2018.  On the Secure and Reconfigurable Multi-Layer Network Design for Critical Information Dissemination in the Internet of Battlefield Things (IoBT). IEEE Transactions on Wireless Communications. 17:2618–2632.

The Internet of things (IoT) is revolutionizing the management and control of automated systems leading to a paradigm shift in areas, such as smart homes, smart cities, health care, and transportation. The IoT technology is also envisioned to play an important role in improving the effectiveness of military operations in battlefields. The interconnection of combat equipment and other battlefield resources for coordinated automated decisions is referred to as the Internet of battlefield things (IoBT). IoBT networks are significantly different from traditional IoT networks due to battlefield specific challenges, such as the absence of communication infrastructure, heterogeneity of devices, and susceptibility to cyber-physical attacks. The combat efficiency and coordinated decision-making in war scenarios depends highly on real-time data collection, which in turn relies on the connectivity of the network and information dissemination in the presence of adversaries. This paper aims to build the theoretical foundations of designing secure and reconfigurable IoBT networks. Leveraging the theories of stochastic geometry and mathematical epidemiology, we develop an integrated framework to quantify the information dissemination among heterogeneous network devices. Consequently, a tractable optimization problem is formulated that can assist commanders in cost effectively planning the network and reconfiguring it according to the changing mission requirements.

Yuan, Y., Huo, L., Wang, Z., Hogrefe, D..  2018.  Secure APIT Localization Scheme Against Sybil Attacks in Distributed Wireless Sensor Networks. IEEE Access. 6:27629–27636.
For location-aware applications in wireless sensor networks (WSNs), it is important to ensure that sensor nodes can get correct locations in a hostile WSNs. Sybil attacks, which are vital threats in WSNs, especially in the distributed WSNs. They can forge one or multiple identities to decrease the localization accuracy, or sometimes to collapse the whole localization systems. In this paper, a novel lightweight sybilfree (SF)-APIT algorithm is presented to solve the problem of sybil attacks in APIT localization scheme, which is a popular range-free method and performs at individual node in a purely distributed fashion. The proposed SF-APIT scheme requires minimal overhead for wireless devices and works well based on the received signal strength. Simulations demonstrate that SF-APIT is an effective scheme in detecting and defending against sybil attacks with a high detection rate in distributed wireless localization schemes.
Baek, J., Vu, Q., Liu, J., Huang, X., Xiang, Y..  2014.  A secure cloud computing based framework for big data information management of smart grid. Cloud Computing, IEEE Transactions on. PP:1-1.

Smart grid is a technological innovation that improves efficiency, reliability, economics, and sustainability of electricity services. It plays a crucial role in modern energy infrastructure. The main challenges of smart grids, however, are how to manage different types of front-end intelligent devices such as power assets and smart meters efficiently; and how to process a huge amount of data received from these devices. Cloud computing, a technology that provides computational resources on demands, is a good candidate to address these challenges since it has several good properties such as energy saving, cost saving, agility, scalability, and flexibility. In this paper, we propose a secure cloud computing based framework for big data information management in smart grids, which we call “Smart-Frame.” The main idea of our framework is to build a hierarchical structure of cloud computing centers to provide different types of computing services for information management and big data analysis. In addition to this structural framework, we present a security solution based on identity-based encryption, signature and proxy re-encryption to address critical security issues of the proposed framework.
 

Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Lee, P.P.C., Wenjing Lou.  2014.  Secure Deduplication with Efficient and Reliable Convergent Key Management. Parallel and Distributed Systems, IEEE Transactions on. 25:1615-1625.

Data deduplication is a technique for eliminating duplicate copies of data, and has been widely used in cloud storage to reduce storage space and upload bandwidth. Promising as it is, an arising challenge is to perform secure deduplication in cloud storage. Although convergent encryption has been extensively adopted for secure deduplication, a critical issue of making convergent encryption practical is to efficiently and reliably manage a huge number of convergent keys. This paper makes the first attempt to formally address the problem of achieving efficient and reliable key management in secure deduplication. We first introduce a baseline approach in which each user holds an independent master key for encrypting the convergent keys and outsourcing them to the cloud. However, such a baseline key management scheme generates an enormous number of keys with the increasing number of users and requires users to dedicatedly protect the master keys. To this end, we propose Dekey , a new construction in which users do not need to manage any keys on their own but instead securely distribute the convergent key shares across multiple servers. Security analysis demonstrates that Dekey is secure in terms of the definitions specified in the proposed security model. As a proof of concept, we implement Dekey using the Ramp secret sharing scheme and demonstrate that Dekey incurs limited overhead in realistic environments.

Odelu, Vanga, Das, Ashok Kumar, Goswami, Adrijit.  2014.  A Secure Effective Key Management Scheme for Dynamic Access Control in a Large Leaf Class Hierarchy. Inf. Sci.. 269:270–285.

Lo et al. (2011) proposed an efficient key assignment scheme for access control in a large leaf class hierarchy where the alternations in leaf classes are more frequent than in non-leaf classes in the hierarchy. Their scheme is based on the public-key cryptosystem and hash function where operations like modular exponentiations are very much costly compared to symmetric-key encryptions and decryptions, and hash computations. Their scheme performs better than the previously proposed schemes. However, in this paper, we show that Lo et al.’s scheme fails to preserve the forward security property where a security class can also derive the secret keys of its successor classes ’s even after deleting the security class  from the hierarchy. We aim to propose a new key management scheme for dynamic access control in a large leaf class hierarchy, which makes use of symmetric-key cryptosystem and one-way hash function. We show that our scheme requires significantly less storage and computational overheads as compared to Lo et al.’s scheme and other related schemes. Through the informal and formal security analysis, we further show that our scheme is secure against all possible attacks including the forward security. In addition, our scheme supports efficiently dynamic access control problems compared to Lo et al.’s scheme and other related schemes. Thus, higher security along with low storage and computational costs make our scheme more suitable for practical applications compared to other schemes.

Fawzi, H., Tabuada, P., Diggavi, S..  2014.  Secure Estimation and Control for Cyber-Physical Systems Under Adversarial Attacks. Automatic Control, IEEE Transactions on. 59:1454-1467.

The vast majority of today's critical infrastructure is supported by numerous feedback control loops and an attack on these control loops can have disastrous consequences. This is a major concern since modern control systems are becoming large and decentralized and thus more vulnerable to attacks. This paper is concerned with the estimation and control of linear systems when some of the sensors or actuators are corrupted by an attacker. We give a new simple characterization of the maximum number of attacks that can be detected and corrected as a function of the pair (A,C) of the system and we show in particular that it is impossible to accurately reconstruct the state of a system if more than half the sensors are attacked. In addition, we show how the design of a secure local control loop can improve the resilience of the system. When the number of attacks is smaller than a threshold, we propose an efficient algorithm inspired from techniques in compressed sensing to estimate the state of the plant despite attacks. We give a theoretical characterization of the performance of this algorithm and we show on numerical simulations that the method is promising and allows to reconstruct the state accurately despite attacks. Finally, we consider the problem of designing output-feedback controllers that stabilize the system despite sensor attacks. We show that a principle of separation between estimation and control holds and that the design of resilient output feedback controllers can be reduced to the design of resilient state estimators.

Young Hwan Chang, Qie Hu, Claire J. Tomlin.  2015.  Secure Estimation based Kalman Filter for Cyber-Physical Systems against Adversarial Attacks. CoRR. abs/1512.03853

Cyber-physical systems (CPSs) are found in many applications such as power networks, manufacturing processes, and air and ground transportation systems. Maintaining security of these systems under cyber attacks is an important and challenging task, since these attacks can be erratic and thus difficult to model. Secure estimation problems study how to estimate the true system states when measurements are corrupted and/or control inputs are compromised by attackers. The authors in [1] proposed a secure estimation method when the set of attacked nodes (sensors, controllers) is fixed. In this paper, we extend these results to scenarios in which the set of attacked nodes can change over time. We formulate this secure estimation problem into the classical error correction problem [2] and we show that accurate decoding can be guaranteed under a certain condition. Furthermore, we propose a combined secure estimation method with our proposed secure estimator above and the Kalman Filter (KF) for improved practical performance. Finally, we demonstrate the performance of our method through simulations of two scenarios where an unmanned aerial vehicle is under adversarial attack.

Yilin Mo, Sinopoli, B..  2015.  Secure Estimation in the Presence of Integrity Attacks. Automatic Control, IEEE Transactions on. 60:1145-1151.

We consider the estimation of a scalar state based on m measurements that can be potentially manipulated by an adversary. The attacker is assumed to have full knowledge about the true value of the state to be estimated and about the value of all the measurements. However, the attacker has limited resources and can only manipulate up to l of the m measurements. The problem is formulated as a minimax optimization, where one seeks to construct an optimal estimator that minimizes the “worst-case” expected cost against all possible manipulations by the attacker. We show that if the attacker can manipulate at least half the measurements (l ≥ m/2), then the optimal worst-case estimator should ignore all measurements and be based solely on the a-priori information. We provide the explicit form of the optimal estimator when the attacker can manipulate less than half the measurements (l <; m/2), which is based on (m2l) local estimators. We further prove that such an estimator can be reduced into simpler forms for two special cases, i.e., either the estimator is symmetric and monotone or m = 2l + 1. Finally we apply the proposed methodology in the case of Gaussian measurements.

Zhou, Lu, Liu, Qiao, Wang, Yong, Li, Hui.  2017.  Secure Group Information Exchange Scheme for Vehicular Ad Hoc Networks. Personal Ubiquitous Comput.. 21:903–910.

In this paper, a novel secure information exchange scheme has been proposed for MIMO vehicular ad hoc networks (VANETs) through physical layer approach. In the scheme, a group of On Board Units (OBUs) exchange information with help of one Road Side Unit (RSU). By utilizing the key signal processing technique, i.e., Direction Rotation Alignment technique, the information to be exchanged of the two neighbor OBUs are aligned into a same direction to form summed signal at RSU or external eavesdroppers. With such summed signal, the RSU or the eavesdropper cannot recover the individual information from the OBUs. By regulating the transmission rate for each OBU, the information theoretic security could be achieved. The secrecy sum-rates of the proposed scheme are analyzed following the scheme. Finally, the numerical results are conducted to demonstrate the theoretical analysis.

Ye, Conghuan, Ling, Hefei, Xiong, Zenggang, Zou, Fuhao, Liu, Cong, Xu, Fang.  2016.  Secure Social Multimedia Big Data Sharing Using Scalable JFE in the TSHWT Domain. ACM Trans. Multimedia Comput. Commun. Appl.. 12:61:1–61:23.

With the advent of social networks and cloud computing, the amount of multimedia data produced and communicated within social networks is rapidly increasing. In the meantime, social networking platforms based on cloud computing have made multimedia big data sharing in social networks easier and more efficient. The growth of social multimedia, as demonstrated by social networking sites such as Facebook and YouTube, combined with advances in multimedia content analysis, underscores potential risks for malicious use, such as illegal copying, piracy, plagiarism, and misappropriation. Therefore, secure multimedia sharing and traitor tracing issues have become critical and urgent in social networks. In this article, a joint fingerprinting and encryption (JFE) scheme based on tree-structured Haar wavelet transform (TSHWT) is proposed with the purpose of protecting media distribution in social network environments. The motivation is to map hierarchical community structure of social networks into a tree structure of Haar wavelet transform for fingerprinting and encryption. First, fingerprint code is produced using social network analysis (SNA). Second, the content is decomposed based on the structure of fingerprint code by the TSHWT. Then, the content is fingerprinted and encrypted in the TSHWT domain. Finally, the encrypted contents are delivered to users via hybrid multicast-unicast. The proposed method, to the best of our knowledge, is the first scalable JFE method for fingerprinting and encryption in the TSHWT domain using SNA. The use of fingerprinting along with encryption using SNA not only provides a double layer of protection for social multimedia sharing in social network environment but also avoids big data superposition effect. Theory analysis and experimental results show the effectiveness of the proposed JFE scheme.

Xia, Qi, Sifah, Emmanuel Boateng, Obour Agyekum, Kwame Opuni-Boachie, Xia, Hu, Acheampong, Kingsley Nketia, Smahi, Abla, Gao, Jianbin, Du, Xiaojiang, Guizani, Mohsen.  2019.  Secured Fine-Grained Selective Access to Outsourced Cloud Data in IoT Environments. IEEE Internet of Things Journal. 6:10749–10762.
With the vast increase in data transmission due to a large number of information collected by devices, data management, and security has been a challenge for organizations. Many data owners (DOs) outsource their data to cloud repositories due to several economic advantages cloud service providers present. However, DOs, after their data are outsourced, do not have complete control of the data, and therefore, external systems are incorporated to manage the data. Several kinds of research refer to the use of encryption techniques to prevent unauthorized access to data but prove to be deficient in providing suitable solutions to the problem. In this article, we propose a secure fine-grain access control system for outsourced data, which supports read and write operations to the data. We make use of an attribute-based encryption (ABE) scheme, which is regarded as a suitable scheme to achieve access control for security and privacy (confidentiality) of outsourced data. This article considers different categories of data users, and make provisions for distinct access roles and permissible actions on the outsourced data with dynamic and efficient policy updates to the corresponding ciphertext in cloud repositories. We adopt blockchain technologies to enhance traceability and visibility to enable control over outsourced data by a DO. The security analysis presented demonstrates that the security properties of the system are not compromised. Results based on extensive experiments illustrate the efficiency and scalability of our system.
Kloft, Marius, Laskov, Pavel.  2012.  Security Analysis of Online Centroid Anomaly Detection. J. Mach. Learn. Res.. 13:3681–3724.

Security issues are crucial in a number of machine learning applications, especially in scenarios dealing with human activity rather than natural phenomena (e.g., information ranking, spam detection, malware detection, etc.). In such cases, learning algorithms may have to cope with manipulated data aimed at hampering decision making. Although some previous work addressed the issue of handling malicious data in the context of supervised learning, very little is known about the behavior of anomaly detection methods in such scenarios. In this contribution, we analyze the performance of a particular method–online centroid anomaly detection–in the presence of adversarial noise. Our analysis addresses the following security-related issues: formalization of learning and attack processes, derivation of an optimal attack, and analysis of attack efficiency and limitations. We derive bounds on the effectiveness of a poisoning attack against centroid anomaly detection under different conditions: attacker's full or limited control over the traffic and bounded false positive rate. Our bounds show that whereas a poisoning attack can be effectively staged in the unconstrained case, it can be made arbitrarily difficult (a strict upper bound on the attacker's gain) if external constraints are properly used. Our experimental evaluation, carried out on real traces of HTTP and exploit traffic, confirms the tightness of our theoretical bounds and the practicality of our protection mechanisms.

Hongzhen Du, Qiaoyan Wen.  2014.  Security analysis of two certificateless short signature schemes. Information Security, IET. 8:230-233.

Certificateless public key cryptography (CL-PKC) combines the advantage of both traditional PKC and identity-based cryptography (IBC) as it eliminates the certificate management problem in traditional PKC and resolves the key escrow problem in IBC. Recently, Choi et al. and Tso et al.proposed two different efficient CL short signature schemes and claimed that the two schemes are secure against super adversaries and satisfy the strongest security. In this study, the authors show that both Choi et al.'s scheme and Tso et al.'s scheme are insecure against the strong adversaries who can replace users' public keys and have access to the signing oracle under the replaced public keys.
 

Wei, Lifei, Zhu, Haojin, Cao, Zhenfu, Dong, Xiaolei, Jia, Weiwei, Chen, Yunlu, Vasilakos, Athanasios V..  2014.  Security and Privacy for Storage and Computation in Cloud Computing. Inf. Sci.. 258:371–386.

Cloud computing emerges as a new computing paradigm that aims to provide reliable, customized and quality of service guaranteed computation environments for cloud users. Applications and databases are moved to the large centralized data centers, called cloud. Due to resource virtualization, global replication and migration, the physical absence of data and machine in the cloud, the stored data in the cloud and the computation results may not be well managed and fully trusted by the cloud users. Most of the previous work on the cloud security focuses on the storage security rather than taking the computation security into consideration together. In this paper, we propose a privacy cheating discouragement and secure computation auditing protocol, or SecCloud, which is a first protocol bridging secure storage and secure computation auditing in cloud and achieving privacy cheating discouragement by designated verifier signature, batch verification and probabilistic sampling techniques. The detailed analysis is given to obtain an optimal sampling size to minimize the cost. Another major contribution of this paper is that we build a practical secure-aware cloud computing experimental environment, or SecHDFS, as a test bed to implement SecCloud. Further experimental results have demonstrated the effectiveness and efficiency of the proposed SecCloud.

Ali, Sk Subidh, Ibrahim, Mohamed, Sinanoglu, Ozgur, Chakrabarty, Krishnendu, Karri, Ramesh.  2016.  Security Assessment of Cyberphysical Digital Microfluidic Biochips. IEEE/ACM Trans. Comput. Biol. Bioinformatics. 13:445–458.

A digital microfluidic biochip (DMFB) is an emerging technology that enables miniaturized analysis systems for point-of-care clinical diagnostics, DNA sequencing, and environmental monitoring. A DMFB reduces the rate of sample and reagent consumption, and automates the analysis of assays. In this paper, we provide the first assessment of the security vulnerabilities of DMFBs. We identify result-manipulation attacks on a DMFB that maliciously alter the assay outcomes. Two practical result-manipulation attacks are shown on a DMFB platform performing enzymatic glucose assay on serum. In the first attack, the attacker adjusts the concentration of the glucose sample and thereby modifies the final result. In the second attack, the attacker tampers with the calibration curve of the assay operation. We then identify denial-of-service attacks, where the attacker can disrupt the assay operation by tampering either with the droplet-routing algorithm or with the actuation sequence. We demonstrate these attacks using a digital microfluidic synthesis simulator. The results show that the attacks are easy to implement and hard to detect. Therefore, this work highlights the need for effective protections against malicious modifications in DMFBs.

Zhexiong Wei, Tang, H., Yu, F.R., Maoyu Wang, Mason, P..  2014.  Security Enhancements for Mobile Ad Hoc Networks With Trust Management Using Uncertain Reasoning. Vehicular Technology, IEEE Transactions on. 63:4647-4658.

The distinctive features of mobile ad hoc networks (MANETs), including dynamic topology and open wireless medium, may lead to MANETs suffering from many security vulnerabilities. In this paper, using recent advances in uncertain reasoning that originated from the artificial intelligence community, we propose a unified trust management scheme that enhances the security in MANETs. In the proposed trust management scheme, the trust model has two components: trust from direct observation and trust from indirect observation. With direct observation from an observer node, the trust value is derived using Bayesian inference, which is a type of uncertain reasoning when the full probability model can be defined. On the other hand, with indirect observation, which is also called secondhand information that is obtained from neighbor nodes of the observer node, the trust value is derived using the Dempster-Shafer theory (DST), which is another type of uncertain reasoning when the proposition of interest can be derived by an indirect method. By combining these two components in the trust model, we can obtain more accurate trust values of the observed nodes in MANETs. We then evaluate our scheme under the scenario of MANET routing. Extensive simulation results show the effectiveness of the proposed scheme. Specifically, throughput and packet delivery ratio (PDR) can be improved significantly with slightly increased average end-to-end delay and overhead of messages.

Iwamoto, M., Ohta, K., Shikata, J..  2018.  Security Formalizations and Their Relationships for Encryption and Key Agreement in Information-Theoretic Cryptography. IEEE Transactions on Information Theory. 64:654–685.
This paper analyzes the formalizations of information-theoretic security for the fundamental primitives in cryptography: symmetric-key encryption and key agreement. Revisiting the previous results, we can formalize information-theoretic security using different methods, by extending Shannon's perfect secrecy, by information-theoretic analogues of indistinguishability and semantic security, and by the frameworks for composability of protocols. We show the relationships among the security formalizations and obtain the following results. First, in the case of encryption, there are significant gaps among the formalizations, and a certain type of relaxed perfect secrecy or a variant of information-theoretic indistinguishability is the strongest notion. Second, in the case of key agreement, there are significant gaps among the formalizations, and a certain type of relaxed perfect secrecy is the strongest notion. In particular, in both encryption and key agreement, the formalization of composable security is not stronger than any other formalizations. Furthermore, as an application of the relationships in encryption and key agreement, we simultaneously derive a family of lower bounds on the size of secret keys and security quantities required under the above formalizations, which also implies the importance and usefulness of the relationships.
Mathieu Dahan, Saurabh Amin.  2015.  Security Games in Network Flow Problems. CoRR. abs/1512.09335

This paper considers a 2-player strategic game for network routing under link disruptions. Player 1 (defender) routes flow through a network to maximize her value of effective flow while facing transportation costs. Player 2 (attacker) simultaneously disrupts one or more links to maximize her value of lost flow but also faces cost of disrupting links. This game is strategically equivalent to a zero-sum game. Linear programming duality and the max-flow min-cut theorem are applied to obtain properties that are satisfied in any mixed Nash equilibrium. In any equilibrium, both players achieve identical payoffs. While the defender's expected transportation cost decreases in attacker's marginal value of lost flow, the attacker's expected cost of attack increases in defender's marginal value of effective flow. Interestingly, the expected amount of effective flow decreases in both these parameters. These results can be viewed as a generalization of the classical max-flow with minimum transportation cost problem to adversarial environments.

Chatterjee, Tanusree, Ruj, Sushmita, Bit, Sipra Das.  2018.  Security Issues in Named Data Networks. Computer. 51:66–75.
Today's IP and content distribution networks are unable to fulfill all data distribution and security requirements. The named data network (NDN) has emerged as a promising candidate to cope with the Internet usage of the 21st century. Although the NDN has many built-in security features, this survey reviews several pressing security issues and open research areas.
Park, Junkil, Ivanov, Radoslav, Weimer, James, Pajic, Miroslav, Son, Sang Hyuk, Lee, Insup.  2017.  Security of Cyber-Physical Systems in the Presence of Transient Sensor Faults. ACM Trans. Cyber-Phys. Syst.. 1:15:1–15:23.
This article is concerned with the security of modern Cyber-Physical Systems in the presence of transient sensor faults. We consider a system with multiple sensors measuring the same physical variable, where each sensor provides an interval with all possible values of the true state. We note that some sensors might output faulty readings and others may be controlled by a malicious attacker. Differing from previous works, in this article, we aim to distinguish between faults and attacks and develop an attack detection algorithm for the latter only. To do this, we note that there are two kinds of faults—transient and permanent; the former are benign and short-lived, whereas the latter may have dangerous consequences on system performance. We argue that sensors have an underlying transient fault model that quantifies the amount of time in which transient faults can occur. In addition, we provide a framework for developing such a model if it is not provided by manufacturers. Attacks can manifest as either transient or permanent faults depending on the attacker’s goal. We provide different techniques for handling each kind. For the former, we analyze the worst-case performance of sensor fusion over time given each sensor’s transient fault model and develop a filtered fusion interval that is guaranteed to contain the true value and is bounded in size. To deal with attacks that do not comply with sensors’ transient fault models, we propose a sound attack detection algorithm based on pairwise inconsistencies between sensor measurements. Finally, we provide a real-data case study on an unmanned ground vehicle to evaluate the various aspects of this article.
Y. Seifi, S. Suriadi, E. Foo, C. Boyd.  2014.  Security properties analysis in a TPM-based protocol. Int. J. of Security and Networks, 2014 Vol.9, No.2, pp.85 - 103.

Security protocols are designed in order to provide security properties (goals). They achieve their goals using cryptographic primitives such as key agreement or hash functions. Security analysis tools are used in order to verify whether a security protocol achieves its goals or not. The analysed property by specific purpose tools are predefined properties such as secrecy (confidentiality), authentication or non-repudiation. There are security goals that are defined by the user in systems with security requirements. Analysis of these properties is possible with general purpose analysis tools such as coloured petri nets (CPN). This research analyses two security properties that are defined in a protocol that is based on trusted platform module (TPM). The analysed protocol is proposed by Delaune to use TPM capabilities and secrets in order to open only one secret from two submitted secrets to a recipient.

Jin, R., He, X., Dai, H..  2019.  On the Security-Privacy Tradeoff in Collaborative Security: A Quantitative Information Flow Game Perspective. IEEE Transactions on Information Forensics and Security. 14:3273–3286.
To contest the rapidly developing cyber-attacks, numerous collaborative security schemes, in which multiple security entities can exchange their observations and other relevant data to achieve more effective security decisions, are proposed and developed in the literature. However, the security-related information shared among the security entities may contain some sensitive information and such information exchange can raise privacy concerns, especially when these entities belong to different organizations. With such consideration, the interplay between the attacker and the collaborative entities is formulated as Quantitative Information Flow (QIF) games, in which the QIF theory is adapted to measure the collaboration gain and the privacy loss of the entities in the information sharing process. In particular, three games are considered, each corresponding to one possible scenario of interest in practice. Based on the game-theoretic analysis, the expected behaviors of both the attacker and the security entities are obtained. In addition, the simulation results are presented to validate the analysis.