Visible to the public Biblio

Found 1515 results

Filters: First Letter Of Title is S  [Clear All Filters]
2021-06-02
Bychkov, Igor, Feoktistov, Alexander, Gorsky, Sergey, Edelev, Alexei, Sidorov, Ivan, Kostromin, Roman, Fereferov, Evgeniy, Fedorov, Roman.  2020.  Supercomputer Engineering for Supporting Decision-making on Energy Systems Resilience. 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). :1—6.
We propose a new approach to creating a subject-oriented distributed computing environment. Such an environment is used to support decision-making in solving relevant problems of ensuring energy systems resilience. The proposed approach is based on the idea of advancing and integrating the following important capabilities in supercomputer engineering: continuous integration, delivery, and deployment of the system and applied software, high-performance computing in heterogeneous environments, multi-agent intelligent computation planning and resource allocation, big data processing and geo-information servicing for subject information, including weakly structured data, and decision-making support. This combination of capabilities and their advancing are unique to the subject domain under consideration, which is related to combinatorial studying critical objects of energy systems. Evaluation of decision-making alternatives is carrying out through applying combinatorial modeling and multi-criteria selection rules. The Orlando Tools framework is used as the basis for an integrated software environment. It implements a flexible modular approach to the development of scientific applications (distributed applied software packages).
2021-06-01
Englund, Håkan, Lindskog, Niklas.  2020.  Secure acceleration on cloud-based FPGAs – FPGA enclaves. 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). :119—122.
FPGAs are becoming a common sight in cloud environments and new usage paradigms, such as FPGA-as-a-Service, have emerged. This development poses a challenge to traditional FPGA security models, as these are assuming trust between the user and the hardware owner. Currently, the user cannot keep bitstream nor data protected from the hardware owner in an FPGA-as-a-service setting. This paper proposes a security model where the chip manufacturer takes the role of root-of-trust to remedy these security problems. We suggest that the chip manufacturer creates a Public Key Infrastructure (PKI), used for user bitstream protection and data encryption, on each device. The chip manufacturer, rather than the hardware owner, also controls certain security-related peripherals. This allows the user to take control over a predefined part of the programmable logic and set up a protected enclave area. Hence, all user data can be provided in encrypted form and only be revealed inside the enclave area. In addition, our model enables secure and concurrent multi-tenant usage of remote FPGAs. To also consider the needs of the hardware owner, our solution includes bitstream certification and affirming that uploaded bitstreams have been vetted against maliciousness.
Zhu, Luqi, Wang, Jin, Shi, Lianmin, Zhou, Jingya, Lu, Kejie, Wang, Jianping.  2020.  Secure Coded Matrix Multiplication Against Cooperative Attack in Edge Computing. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :547–556.
In recent years, the computation security of edge computing has been raised as a major concern since the edge devices are often distributed on the edge of the network, less trustworthy than cloud servers and have limited storage/ computation/ communication resources. Recently, coded computing has been proposed to protect the confidentiality of computing data under edge device's independent attack and minimize the total cost (resource consumption) of edge system. In this paper, for the cooperative attack, we design an efficient scheme to ensure the information-theory security (ITS) of user's data and further reduce the total cost of edge system. Specifically, we take matrix multiplication as an example, which is an important module appeared in many application operations. Moreover, we theoretically analyze the necessary and sufficient conditions for the existence of feasible scheme, prove the security and decodeability of the proposed scheme. We also prove the effectiveness of the proposed scheme through considerable simulation experiments. Compared with the existing schemes, the proposed scheme further reduces the total cost of edge system. The experiments also show a trade-off between storage and communication.
Materzynska, Joanna, Xiao, Tete, Herzig, Roei, Xu, Huijuan, Wang, Xiaolong, Darrell, Trevor.  2020.  Something-Else: Compositional Action Recognition With Spatial-Temporal Interaction Networks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :1046–1056.
Human action is naturally compositional: humans can easily recognize and perform actions with objects that are different from those used in training demonstrations. In this paper, we study the compositionality of action by looking into the dynamics of subject-object interactions. We propose a novel model which can explicitly reason about the geometric relations between constituent objects and an agent performing an action. To train our model, we collect dense object box annotations on the Something-Something dataset. We propose a novel compositional action recognition task where the training combinations of verbs and nouns do not overlap with the test set. The novel aspects of our model are applicable to activities with prominent object interaction dynamics and to objects which can be tracked using state-of-the-art approaches; for activities without clearly defined spatial object-agent interactions, we rely on baseline scene-level spatio-temporal representations. We show the effectiveness of our approach not only on the proposed compositional action recognition task but also in a few-shot compositional setting which requires the model to generalize across both object appearance and action category.
2021-05-26
Gayatri, R, Gayatri, Yendamury, Mitra, CP, Mekala, S, Priyatharishini, M.  2020.  System Level Hardware Trojan Detection Using Side-Channel Power Analysis and Machine Learning. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :650—654.

Cyber physical systems (CPS) is a dominant technology in today's world due to its vast variety of applications. But in recent times, the alarmingly increasing breach of privacy and security in CPS is a matter of grave concern. Security and trust of CPS has become the need of the hour. Hardware Trojans are one such a malicious attack which compromises on the security of the CPS by changing its functionality or denial of services or leaking important information. This paper proposes the detection of Hardware Trojans at the system level in AES-256 decryption algorithm implemented in Atmel XMega Controller (Target Board) using a combination of side-channel power analysis and machine learning. Power analysis is done with help of ChipWhisperer-Lite board. The power traces of the golden algorithm (Hardware Trojan free) and Hardware Trojan infected algorithms are obtained and used to train the machine learning model using the 80/20 rule. The proposed machine learning model obtained an accuracy of 97%-100% for all the Trojans inserted.

2021-05-25
Tian, Nianfeng, Guo, Qinglai, Sun, Hongbin, Huang, Jianye.  2020.  A Synchronous Iterative Method of Power Flow in Inter-Connected Power Grids Considering Privacy Preservation: A CPS Perspective. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :782–787.
The increasing development of smart grid facilitates that modern power grids inter-connect with each other and form a large power system, making it possible and advantageous to conduct coordinated power flow among several grids. The communication burden and privacy issue are the prominent challenges in the application of synchronous iteration power flow method. In this paper, a synchronous iterative method of power flow in inter-connected power grid considering privacy preservation is proposed. By establishing the masked model of power flow for each sub-grid, the synchronous iteration is conducted by gathering the masked model of sub-grids in the coordination center and solving the masked correction equation in a concentration manner at each step. Generally, the proposed method can concentrate the major calculation of power flow on the coordination center, reduce the communication burden and guarantee the privacy preservation of sub-grids. A case study on IEEE 118-bus test system demonstrate the feasibility and effectiveness of the proposed methodology.
AKCENGİZ, Ziya, Aslan, Melis, Karabayır, Özgür, Doğanaksoy, Ali, Uğuz, Muhiddin, Sulak, Fatih.  2020.  Statistical Randomness Tests of Long Sequences by Dynamic Partitioning. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :68—74.
Random numbers have a wide usage in the area of cryptography. In practice, pseudo random number generators are used in place of true random number generators, as regeneration of them may be required. Therefore because of generation methods of pseudo random number sequences, statistical randomness tests have a vital importance. In this paper, a randomness test suite is specified for long binary sequences. In literature, there are many randomness tests and test suites. However, in most of them, to apply randomness test, long sequences are partitioned into a certain fixed length and the collection of short sequences obtained is evaluated instead. In this paper, instead of partitioning a long sequence into fixed length subsequences, a concept of dynamic partitioning is introduced in accordance with the random variable in consideration. Then statistical methods are applied. The suggested suite, containing four statistical tests: Collision Tests, Weight Test, Linear Complexity Test and Index Coincidence Test, all of them work with the idea of dynamic partitioning. Besides the adaptation of this approach to randomness tests, the index coincidence test is another contribution of this work. The distribution function and the application of all tests are given in the paper.
Pradhan, Ankit, R., Punith., Sethi, Kamalakanta, Bera, Padmalochan.  2020.  Smart Grid Data Security using Practical CP-ABE with Obfuscated Policy and Outsourcing Decryption. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
Smart grid consists of multiple different entities related to various energy management systems which share fine-grained energy measurements among themselves in an optimal and reliable manner. Such delivery is achieved through intelligent transmission and distribution networks composed of various stakeholders like Phasor Measurement Units (PMUs), Master and Remote Terminal Units (MTU and RTU), Storage Centers and users in power utility departments subject to volatile changes in requirements. Hence, secure accessibility of data becomes vital in the context of efficient functioning of the smart grid. In this paper, we propose a practical attribute-based encryption scheme for securing data sharing and data access in Smart Grid architectures with the added advantage of obfuscating the access policy. This is aimed at preserving data privacy in the context of competing smart grid operators. We build our scheme on Linear Secret Sharing (LSS) Schemes for supporting any monotone access structures and thus enhancing the expressiveness of access policies. Lastly, we analyze the security, access policy privacy and collusion resistance properties of our cryptosystem and provide an efficiency comparison as well as experimental analysis using the Charm-Crypto framework to validate the proficiency of our proposed solution.
Silitonga, Arthur, Becker, Juergen.  2020.  Security-driven Cross-Layer Model Description of a HW/SW Framework for AP MPSoC-based Computing Device. 2020 IEEE International Systems Conference (SysCon). :1—8.

Implementation of Internet-of-Things (IoT) can take place in many applications, for instance, automobiles, and industrial automation. We generally view the role of an Electronic Control Unit (ECU) or industrial network node that is occupied and interconnected in many different configurations in a vehicle or a factory. This condition may raise the occurrence of problems related to security issues, such as unauthorized access to data or components in ECUs or industrial network nodes. In this paper, we propose a hardware (HW)/software (SW) framework having integrated security extensions complemented with various security-related features that later can be implemented directly from the framework to All Programmable Multiprocessor System-on-Chip (AP MPSoC)-based ECUs. The framework is a software-defined one that can be configured or reconfigured in a higher level of abstraction language, including High-Level Synthesis (HLS), and the output of the framework is hardware configuration in multiprocessor or reconfigurable components in the FPGA. The system comprises high-level requirements, covert and side-channel estimation, cryptography, optimization, artificial intelligence, and partial reconfiguration. With this framework, we may reduce the design & development time, and provide significant flexibility to configure/reconfigure our framework and its target platform equipped with security extensions.

2021-05-20
Olejnik, Lukasz.  2020.  Shedding light on web privacy impact assessment: A case study of the Ambient Light Sensor API. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :310—313.

As modern web browsers gain new and increasingly powerful features the importance of impact assessments of the new functionality becomes crucial. A web privacy impact assessment of a planned web browser feature, the Ambient Light Sensor API, indicated risks arising from the exposure of overly precise information about the lighting conditions in the user environment. The analysis led to the demonstration of direct risks of leaks of user data, such as the list of visited websites or exfiltration of sensitive content across distinct browser contexts. Our work contributed to the creation of web standards leading to decisions by browser vendors (i.e. obsolescence, non-implementation or modification to the operation of browser features). We highlight the need to consider broad risks when making reviews of new features. We offer practically-driven high-level observations lying on the intersection of web security and privacy risk engineering and modeling, and standardization. We structure our work as a case study from activities spanning over three years.

2021-05-18
Wingerath, Wolfram, Gessert, Felix, Witt, Erik, Kuhlmann, Hannes, Bücklers, Florian, Wollmer, Benjamin, Ritter, Norbert.  2020.  Speed Kit: A Polyglot GDPR-Compliant Approach For Caching Personalized Content. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1603–1608.
Users leave when page loads take too long. This simple fact has complex implications for virtually all modern businesses, because accelerating content delivery through caching is not as simple as it used to be. As a fundamental technical challenge, the high degree of personalization in today's Web has seemingly outgrown the capabilities of traditional content delivery networks (CDNs) which have been designed for distributing static assets under fixed caching times. As an additional legal challenge for services with personalized content, an increasing number of regional data protection laws constrain the ways in which CDNs can be used in the first place. In this paper, we present Speed Kit as a radically different approach for content distribution that combines (1) a polyglot architecture for efficiently caching personalized content with (2) a natively GDPR-compliant client proxy that handles all sensitive information within the user device. We describe the system design and implementation, explain the custom cache coherence protocol to avoid data staleness and achieve Δ-atomicity, and we share field experiences from over a year of productive use in the e-commerce industry.
Sinhabahu, Nadun, Wimalaratne, Prasad, Wijesiriwardana, Chaman.  2020.  Secure Codecity with Evolution: Visualizing Security Vulnerability Evolution of Software Systems. 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer). :1–2.
The analysis of large-scale software and finding security vulnerabilities while its evolving is difficult without using supplementary tools, because of the size and complexity of today's systems. However just by looking at a report, doesn't transmit the overall picture of the system in terms of security vulnerabilities and its evolution throughout the project lifecycle. Software visualization is a program comprehension technique used in the context of the present and explores large amounts of information precisely. For the analysis of security vulnerabilities of complex software systems, Secure Codecity with Evolution is an interactive 3D visualization tool that can be utilized. Its studies techniques and methods are used for graphically illustrating security aspects and the evolution of software. The Main goal of the proposed Framework defined as uplift, simplify, and clarify the mental representation that a software engineer has of a software system and its evolution in terms of its security. Static code was visualised based on a city metaphor, which represents classes as buildings and packages as districts of a city. Identified Vulnerabilities were represented in a different color according to the severity. To visualize a number of different aspects, A large variety of options were given. Users can evaluate the evolution of the security vulnerabilities of a system on several versions using Matrices provided which will help users go get an overall understanding about security vulnerabilities varies with different versions of software. This framework was implemented using SonarQube for software vulnerability detection and ThreeJs for implementing the City Metaphor. The evaluation results evidently show that our framework surpasses the existing tools in terms of accuracy, efficiency and usability.
Morapitiya, Sumali S., Furqan Ali, Mohammad, Rajkumar, Samikkannu, Wijayasekara, Sanika K., Jayakody, Dushantha Nalin K., Weerasuriya, R.U..  2020.  A SLIPT-assisted Visible Light Communication Scheme. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :368–375.
Simultaneous Wireless Information and Power Transfer (SWIPT) technique is introduced in Radio Frequency (RF) communication to carry both information and power in same medium. In this approach, the energy can be harvested while decoding the information carries in an RF wave. Recently, the same concept applied in Visible Light Communication (VLC) namely Simultaneous Light Wave Information and Power Transfer (SLIPT), which is highly recommended in an indoor applications to overcome the problem facing in RF communication. Thus, SLIPT is introduced to transmit the power through a Light Emitting Diode (LED) luminaries. In this work, we compare both SWIPT and SLIPT technologies and realize SLIPT technology archives increased performance in terms of the amount of harvested energy, outage probability and error rate performance.
Sun, Yu, Zhao, Xiang.  2020.  On the Secrecy Performance of Random Mobile User in Visible Light Communication Systems. 2020 12th International Conference on Communication Software and Networks (ICCSN). :172–177.
For most of the current research on physical-layer security in indoor visible light communication (VLC) systems, a static communication environment was mainly considered, where secure communication about static users was investigated. However, much secure problems remain to be settled about mobile users. To improve the secrecy performance of mobile users, a two-dimensional circular optical atto-cell with security protected zone is considered. The proposed VLC systems include a LED transmitter Alice, a mobile user Bob and a passive eavesdropper Eve. A typical random waypoint model (RWP) being assumed, the secrecy outage probability (SOP) and secrecy throughput (ST) have been investigated for mobile users in VLC systems. The theoretical analysis results have been verified through Monte Carlo simulations. The simulation results show that the secrecy performance of mobile users in VLC can be improved by enlarging the radius of protected zone, and it also depends on the target secrecy rate and the LEDs' configuration.
Liu, Xiaodong, Chen, Zezong, Wang, Yuhao, Zhou, Fuhui, Ma, Shuai, Hu, Rose Qingyang.  2020.  Secure Beamforming Designs in MISO Visible Light Communication Networks with SLIPT. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Visible light communication (VLC) is a promising technique in the fifth and beyond wireless communication networks. In this paper, a secure multiple-input single-output VLC network is studied, where simultaneous lightwave information and power transfer (SLIPT) is exploited to support energy-limited devices taking into account a practical non-linear energy harvesting model. Specifically, the optimal beamforming design problems for minimizing transmit power and maximizing the minimum secrecy rate are studied under the imperfect channel state information (CSI). S-Procedure and a bisection search is applied to tackle challenging non-convex problems and to obtain efficient resource allocation algorithm. It is proved that optimal beamforming schemes can be obtained. It is found that there is a non-trivial trade-off between the average harvested power and the minimum secrecy rate. Moreover, we show that the quality of CSI has a significant impact on achievable performance.
2021-05-13
Dave, Avani, Banerjee, Nilanjan, Patel, Chintan.  2020.  SRACARE: Secure Remote Attestation with Code Authentication and Resilience Engine. 2020 IEEE International Conference on Embedded Software and Systems (ICESS). :1—8.

Recent technological advancements have enabled proliferated use of small embedded and IoT devices for collecting, processing, and transferring the security-critical information and user data. This exponential use has acted as a catalyst in the recent growth of sophisticated attacks such as the replay, man-in-the-middle, and malicious code modification to slink, leak, tweak or exploit the security-critical information in malevolent activities. Therefore, secure communication and software state assurance (at run-time and boot-time) of the device has emerged as open security problems. Furthermore, these devices need to have an appropriate recovery mechanism to bring them back to the known-good operational state. Previous researchers have demonstrated independent methods for attack detection and safeguard. However, the majority of them lack in providing onboard system recovery and secure communication techniques. To bridge this gap, this manuscript proposes SRACARE - a framework that utilizes the custom lightweight, secure communication protocol that performs remote/local attestation, and secure boot with an onboard resilience recovery mechanism to protect the devices from the above-mentioned attacks. The prototype employs an efficient lightweight, low-power 32-bit RISC-V processor, secure communication protocol, code authentication, and resilience engine running on the Artix 7 Field Programmable Gate Array (FPGA) board. This work presents the performance evaluation and state-of-the-art comparison results, which shows promising resilience to attacks and demonstrate the novel protection mechanism with onboard recovery. The framework achieves these with only 8% performance overhead and a very small increase in hardware-software footprint.

Ammar, Mahmoud, Crispo, Bruno, Tsudik, Gene.  2020.  SIMPLE: A Remote Attestation Approach for Resource-constrained IoT devices. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :247—258.

Remote Attestation (RA) is a security service that detects malware presence on remote IoT devices by verifying their software integrity by a trusted party (verifier). There are three main types of RA: software (SW)-, hardware (HW)-, and hybrid (SW/HW)-based. Hybrid techniques obtain secure RA with minimal hardware requirements imposed on the architectures of existing microcontrollers units (MCUs). In recent years, considerable attention has been devoted to hybrid techniques since prior software-based ones lack concrete security guarantees in a remote setting, while hardware-based approaches are too costly for low-end MCUs. However, one key problem is that many already deployed IoT devices neither satisfy minimal hardware requirements nor support hardware modifications, needed for hybrid RA. This paper bridges the gap between software-based and hybrid RA by proposing a novel RA scheme based on software virtualization. In particular, it proposes a new scheme, called SIMPLE, which meets the minimal hardware requirements needed for secure RA via reliable software. SIMPLE depends on a formally-verified software-based memory isolation technique, called Security MicroVisor (Sμ V). Its reliability is achieved by extending the formally-verified safety and correctness properties to cover the entire software architecture of SIMPLE. Furthermore, SIMPLE is used to construct SIMPLE+, an efficient swarm attestation scheme for static and dynamic heterogeneous IoT networks. We implement and evaluate SIMPLE and SIMPLE+ on Atmel AVR architecture, a common MCU platform.

Feng, Liu, Jie, Yang, Deli, Kong, Jiayin, Qi.  2020.  A Secure Multi-party Computation Protocol Combines Pederson Commitment with Schnorr Signature for Blockchain. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :57—63.

Blockchain is being pursued by a growing number of people with its characteristics of openness, transparency, and decentralization. At the same time, how to secure privacy protection in such an open and transparent ledger is an urgent issue to be solved for deep study. Therefore, this paper proposes a protocol based on Secure multi-party computation, which can merge and sign different transaction messages under the anonymous condition by using Pedersen commitment and Schnorr Signature. Through the rationality proof and security analysis, this paper demonstrates the private transaction is safe under the semi-honest model. And its computational cost is less than the equivalent multi-signature model. The research has made some innovative contributions to the privacy computing theory.

Guan, Bo, Takbiri, Nazanin, Goeckel, Dennis L., Houmansadr, Amir, Pishro-Nik, Hossein.  2020.  Sequence Obfuscation to Thwart Pattern Matching Attacks. 2020 IEEE International Symposium on Information Theory (ISIT). :884—889.

Suppose we are given a large number of sequences on a given alphabet, and an adversary is interested in identifying (de-anonymizing) a specific target sequence based on its patterns. Our goal is to thwart such an adversary by obfuscating the target sequences by applying artificial (but small) distortions to its values. A key point here is that we would like to make no assumptions about the statistical model of such sequences. This is in contrast to existing literature where assumptions (e.g., Markov chains) are made regarding such sequences to obtain privacy guarantees. We relate this problem to a set of combinatorial questions on sequence construction based on which we are able to obtain provable guarantees. This problem is relevant to important privacy applications: from fingerprinting webpages visited by users through anonymous communication systems to linking communicating parties on messaging applications to inferring activities of users of IoT devices.

Bansal, Naman, Agarwal, Chirag, Nguyen, Anh.  2020.  SAM: The Sensitivity of Attribution Methods to Hyperparameters. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :11–21.
Attribution methods can provide powerful insights into the reasons for a classifier's decision. We argue that a key desideratum of an explanation method is its robustness to input hyperparameters which are often randomly set or empirically tuned. High sensitivity to arbitrary hyperparameter choices does not only impede reproducibility but also questions the correctness of an explanation and impairs the trust of end-users. In this paper, we provide a thorough empirical study on the sensitivity of existing attribution methods. We found an alarming trend that many methods are highly sensitive to changes in their common hyperparameters e.g. even changing a random seed can yield a different explanation! Interestingly, such sensitivity is not reflected in the average explanation accuracy scores over the dataset as commonly reported in the literature. In addition, explanations generated for robust classifiers (i.e. which are trained to be invariant to pixel-wise perturbations) are surprisingly more robust than those generated for regular classifiers.
Niu, Yingjiao, Lei, Lingguang, Wang, Yuewu, Chang, Jiang, Jia, Shijie, Kou, Chunjing.  2020.  SASAK: Shrinking the Attack Surface for Android Kernel with Stricter “seccomp” Restrictions. 2020 16th International Conference on Mobility, Sensing and Networking (MSN). :387–394.
The increasing vulnerabilities in Android kernel make it an attractive target to the attackers. Most kernel-targeted attacks are initiated through system calls. For security purpose, Google has introduced a Linux kernel security mechanism named “seccomp” since Android O to constrain the system calls accessible to the Android apps. Unfortunately, existing Android seccomp mechanism provides a fairly coarse-grained restriction by enforcing a unified seccomp policy containing more than 250 system calls for Android apps, which greatly reduces the effectiveness of seccomp. Also, it lacks an approach to profile the unnecessary system calls for a given Android app. In this paper we present a two-level control scheme named SASAK, which can shrink the attack surface of Android kernel by strictly constraining the system calls available to the Android apps with seccomp mechanism. First, instead of leveraging a unified seccomp policy for all Android apps, SASAK introduces an architecture- dedicated system call constraining by enforcing two separate and refined seccomp policies for the 32-bit Android apps and 64-bit Android apps, respectively. Second, we provide a tool to profile the necessary system calls for a given Android app and enforce an app-dedicated seccomp policy to further reduce the allowed system calls for the apps selected by the users. The app-dedicated control could dynamically change the seccomp policy for an app according to its actual needs. We implement a prototype of SASAK and the experiment results show that the architecture-dedicated constraining reduces 39.6% system calls for the 64-bit apps and 42.5% system calls for the 32-bit apps. 33% of the removed system calls for the 64-bit apps are vulnerable, and the number for the 32-bit apps is 18.8%. The app-dedicated restriction reduces about 66.9% and 62.5% system calls on average for the 64-bit apps and 32-bit apps, respectively. In addition, SASAK introduces negligible performance overhead.
Luo, Yukui, Gongye, Cheng, Ren, Shaolei, Fei, Yunsi, Xu, Xiaolin.  2020.  Stealthy-Shutdown: Practical Remote Power Attacks in Multi - Tenant FPGAs. 2020 IEEE 38th International Conference on Computer Design (ICCD). :545–552.
With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumption by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks.
Lit, Yanyan, Kim, Sara, Sy, Eric.  2021.  A Survey on Amazon Alexa Attack Surfaces. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–7.
Since being launched in 2014, Alexa, Amazon's versatile cloud-based voice service, is now active in over 100 million households worldwide [1]. Alexa's user-friendly, personalized vocal experience offers customers a more natural way of interacting with cutting-edge technology by allowing the ability to directly dictate commands to the assistant. Now in the present year, the Alexa service is more accessible than ever, available on hundreds of millions of devices from not only Amazon but third-party device manufacturers. Unfortunately, that success has also been the source of concern and controversy. The success of Alexa is based on its effortless usability, but in turn, that has led to a lack of sufficient security. This paper surveys various attacks against Amazon Alexa ecosystem including attacks against the frontend voice capturing and the cloud backend voice command recognition and processing. Overall, we have identified six attack surfaces covering the lifecycle of Alexa voice interaction that spans several stages including voice data collection, transmission, processing and storage. We also discuss the potential mitigation solutions for each attack surface to better improve Alexa or other voice assistants in terms of security and privacy.
2021-05-05
Chi, Po-Wen, Wang, Ming-Hung, Zheng, Yu.  2020.  SandboxNet: An Online Malicious SDN Application Detection Framework for SDN Networking. 2020 International Computer Symposium (ICS). :397—402.

Software Defined Networking (SDN) is a concept that decouples the control plane and the user plane. So the network administrator can easily control the network behavior through its own programs. However, the administrator may unconsciously apply some malicious programs on SDN controllers so that the whole network may be under the attacker’s control. In this paper, we discuss the malicious software issue on SDN networks. We use the idea of sandbox to propose a sandbox network called SanboxNet. We emulate a virtual isolated network environment to verify the SDN application functions. With continuous monitoring, we can locate the suspicious SDN applications. We also consider the sandbox-evading issue in our framework. The emulated networks and the real world networks will be indistinguishable to the SDN controller.

Cano M, Jeimy J..  2020.  Sandbox: Revindicate failure as the foundation of learning. 2020 IEEE World Conference on Engineering Education (EDUNINE). :1—6.

In an increasingly asymmetric context of both instability and permanent innovation, organizations demand new capacities and learning patterns. In this sense, supervisors have adopted the metaphor of the "sandbox" as a strategy that allows their regulated parties to experiment and test new proposals in order to study them and adjust to the established compliance frameworks. Therefore, the concept of the "sandbox" is of educational interest as a way to revindicate failure as a right in the learning process, allowing students to think, experiment, ask questions and propose ideas outside the known theories, and thus overcome the mechanistic formation rooted in many of the higher education institutions. Consequently, this article proposes the application of this concept for educational institutions as a way of resignifying what students have learned.