Visible to the public Biblio

Found 1633 results

Filters: First Letter Of Title is S  [Clear All Filters]
Thesis
Craig Buchanan, University of Illinois at Urbana-Champaign.  2014.  Simulation Debugging and Visualization in the Mobius Modeling Framework. Department of Electrical and Computer Engineering. M.S.

Large and complex models can be difficult to analyze using static analysis results from current tools, including the M¨obius modeling framework, which provides a powerful, formalism- independent, discrete-event simulator that outputs static results such as execution traces. The M¨obius Simulation Debugger and Visualization (MSDV) feature adds user interaction to running simulations to provide a more transparent view into the dynamics of the models under consideration. This thesis discusses the details of the design and implementation of this feature in the M¨obius modeling environment. Also, a case study is presented to demonstrate the new capabilities provided by the feature.

Report
Presentation
Eric Badger, University of Illinois at Urbana-Champaign, Phuong Cao, University of Illinois at Urbana-Champaign, Alex Withers, University of Illinois at Urbana-Champaign, Adam Slagell, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar Iyer, University of Illinois at Urbana-Champaign.  2015.  Scalable Data Analytics Pipeline for Real-Time Attack Detection; Design, Validation, and Deployment in a Honey Pot Environment.

This talk will explore a scalable data analytics pipeline for real-time attack detection through the use of customized honeypots at the National Center for Supercomputing Applications (NCSA). Attack detection tools are common and are constantly improving, but validating these tools is challenging. You must: (i) identify data (e.g., system-level events) that is essential for detecting attacks, (ii) extract this data from multiple data logs collected by runtime monitors, and (iii) present the data to the attack detection tools. On top of this, such an approach must scale with an ever-increasing amount of data, while allowing integration of new monitors and attack detection tools. All of these require an infrastructure to host and validate the developed tools before deployment into a production environment.

We will present a generalized architecture that aims for a real-time, scalable, and extensible pipeline that can be deployed in diverse infrastructures to validate arbitrary attack detection tools. To motivate our approach, we will show an example deployment of our pipeline based on open-sourced tools. The example deployment uses as its data sources: (i) a customized honeypot environment at NCSA and (ii) a container-based testbed infrastructure for interactive attack replay. Each of these data sources is equipped with network and host-based monitoring tools such as Bro (a network-based intrusion detection system) and OSSEC (a host-based intrusion detection system) to allow for the runtime collection of data on system/user behavior. Finally, we will present an attack detection tool that we developed and that we look to validate through our pipeline. In conclusion, the talk will discuss the challenges of transitioning attack detection from theory to practice and how the proposed data analytics pipeline can help that transition.

Presented at the Illinois Information Trust Institute Joint Trust and Security/Science of Security Seminar, October 6, 2016.

Presented at the NSA SoS Quarterly Lablet Meeting, October 2015.

Ben Ujcich, University of Illinois at Urbana-Champaign.  2017.  Securing SDNs with App Provenance.

Presented at the UIUC/R2 Monthly Meeting on September 18, 2017.

Zhenqi Huang, University of Illinois at Urbana-Champaign, Yu Wang, University of Illinois at Urbana-Champaign.  2015.  SMT-Based Controller Synthesis for Linear Dynamical Systems with Adversary.

We present a controller synthesis algorithm for a discrete time reach-avoid problem in the presence of adversaries. Our model of the adversary captures typical malicious attacks envisioned on cyber-physical systems such as sensor spoofing, controller corruption, and actuator intrusion. After formulating the problem in a general setting, we present a sound and complete algorithm for the case with linear dynamics and an adversary with a budget on the total L2-norm of its actions. The algorithm relies on a result from linear control theory that enables us to decompose and precisely compute the reachable states of the system in terms of a symbolic simulation of the adversary-free dynamics and the total uncertainty induced by the adversary. We provide constraint-based synthesis algorithms for synthesizing open-loop and a closed-loop controllers using SMT solvers.

Prestented at the Joint Trust and Security/Science of Security Seminar, November 3, 2015.

Giulia Fanti, University of Illinois at Urbana-Champaign.  2016.  Spy vs. Spy: Anonymous Messaging over Networks.

Anonymous microblogging platforms, such as Whisper, Yik Yak, and Secret have emerged as important tools for sharing one’s thoughts without fear of judgment by friends, the public, or authorities. These platforms provide anonymity by allowing users to share content (e.g., short messages) with their peers without revealing authorship information to other users. However, recent advances in rumor source detection show that existing messaging protocols, including those used in the mentioned anonymous microblogging applications, leak authorship information when the adversary has global access to metadata. For example, if an adversary can see which users of a messaging service received a particular message, or the timestamps at which a subset of users received a given message, the adversary can infer the message author’s identity with high probability. We introduce a novel anonymous messaging protocol, which we call adaptive diffusion, that is designed to resist such adversaries. We show that adaptive diffusion spreads messages quickly while achieving provably-optimal anonymity guarantees for specific classes of connectivity networks. Simulations on real social network data show that adaptive diffusion effectively hides the location of the source on real-world networks.

Miscellaneous
Ma, Siyou, Feng, Gao, Yan, Yunqiang.  2019.  Study on Hybrid Collaborative Simulation Testing Method Towards CPS. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :51—56.

CPS is generally complex to study, analyze, and design, as an important means to ensure the correctness of design and implementation of CPS system, simulation test is difficult to fully test, verify and evaluate the components or subsystems in the CPS system due to the inconsistent development progress of the com-ponents or subsystems in the CPS system. To address this prob-lem, we designed a hybrid P2P based collaborative simulation test framework composed of full physical nodes, hardware in the loop(HIL) nodes and full digital nodes to simulate the compo-nents or subsystems in the CPS system of different development progress, based on the framework, we then proposed collabora-tive simulation control strategy comprising sliding window based clock synchronization, dynamic adaptive time advancement and multi-priority task scheduling with preemptive time threshold. Experiments showed that the hybrid collaborative simulation testing method proposed in this paper can fully test CPS more effectively.

Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2018.  Synergistic Security for the Industrial Internet of Things: Integrating Redundancy, Diversity, and Hardening.

As the Industrial Internet of Things (IIot) becomes more prevalent in critical application domains, ensuring security and resilience in the face of cyber-attacks is becoming an issue of paramount importance. Cyber-attacks against critical infrastructures, for example, against smart water-distribution and transportation systems, pose serious threats to public health and safety. Owing to the severity of these threats, a variety of security techniques are available. However, no single technique can address the whole spectrum of cyber-attacks that may be launched by a determined and resourceful attacker. In light of this, we consider a multi-pronged approach for designing secure and resilient IIoT systems, which integrates redundancy, diversity, and hardening techniques. We introduce a framework for quantifying cyber-security risks and optimizing IIoT design by determining security investments in redundancy, diversity, and hardening. To demonstrate the applicability of our framework, we present two case studies in water distribution and transportation a case study in water-distribution systems. Our numerical evaluation shows that integrating redundancy, diversity, and hardening can lead to reduced security risk at the same cost.

Magazine Article
Journal Article
Wang, Hui, Yan, Qiurong, Li, Bing, Yuan, Chenglong, Wang, Yuhao.  2019.  Sampling Time Adaptive Single-Photon Compressive Imaging. IEEE Photonics Journal. 11:1–10.
We propose a time-adaptive sampling method and demonstrate a sampling-time-adaptive single-photon compressive imaging system. In order to achieve self-adapting adjustment of sampling time, the theory of threshold of light intensity estimation accuracy is deduced. According to this threshold, a sampling control module, based on field-programmable gate array, is developed. Finally, the advantage of the time-adaptive sampling method is proved experimentally. Imaging performance experiments show that the time-adaptive sampling method can automatically adjust the sampling time for the change of light intensity of image object to obtain an image with better quality and avoid speculative selection of sampling time.
Tan, Li, Chen, Zizhong, Song, Shuaiwen Leon.  2015.  Scalable Energy Efficiency with Resilience for High Performance Computing Systems: A Quantitative Methodology. ACM Trans. Archit. Code Optim.. 12:35:1–35:27.

Ever-growing performance of supercomputers nowadays brings demanding requirements of energy efficiency and resilience, due to rapidly expanding size and duration in use of the large-scale computing systems. Many application/architecture-dependent parameters that determine energy efficiency and resilience individually have causal effects with each other, which directly affect the trade-offs among performance, energy efficiency and resilience at scale. To enable high-efficiency management for large-scale High-Performance Computing (HPC) systems nowadays, quantitatively understanding the entangled effects among performance, energy efficiency, and resilience is thus required. While previous work focuses on exploring energy-saving and resilience-enhancing opportunities separately, little has been done to theoretically and empirically investigate the interplay between energy efficiency and resilience at scale. In this article, by extending the Amdahl’s Law and the Karp-Flatt Metric, taking resilience into consideration, we quantitatively model the integrated energy efficiency in terms of performance per Watt and showcase the trade-offs among typical HPC parameters, such as number of cores, frequency/voltage, and failure rates. Experimental results for a wide spectrum of HPC benchmarks on two HPC systems show that the proposed models are accurate in extrapolating resilience-aware performance and energy efficiency, and capable of capturing the interplay among various energy-saving and resilience factors. Moreover, the models can help find the optimal HPC configuration for the highest integrated energy efficiency, in the presence of failures and applied resilience techniques.

Pi-Chung Wang.  2014.  Scalable Packet Classification for Datacenter Networks. Selected Areas in Communications, IEEE Journal on. 32:124-137.

The key challenge to a datacenter network is its scalability to handle many customers and their applications. In a datacenter network, packet classification plays an important role in supporting various network services. Previous algorithms store classification rules with the same length combinations in a hash table to simplify the search procedure. The search performance of hash-based algorithms is tied to the number of hash tables. To achieve fast and scalable packet classification, we propose an algorithm, encoded rule expansion, to transform rules into an equivalent set of rules with fewer distinct length combinations, without affecting the classification results. The new algorithm can minimize the storage penalty of transformation and achieve a short search time. In addition, the scheme supports fast incremental updates. Our simulation results show that more than 90% hash tables can be eliminated. The reduction of length combinations leads to an improvement on speed performance of packet classification by an order of magnitude. The results also show that the software implementation of our scheme without using any hardware parallelism can support up to one thousand customer VLANs and one million rules, where each rule consumes less than 60 bytes and each packet classification can be accomplished under 50 memory accesses.
 

Shuhao Liu, Baochun Li.  2015.  "On scaling software-Defined Networking in wide-area networks". Tsinghua Science and Technology. 20:221-232.

Software-Defined Networking (SDN) has emerged as a promising direction for next-generation network design. Due to its clean-slate and highly flexible design, it is believed to be the foundational principle for designing network architectures and improving their flexibility, resilience, reliability, and security. As the technology matures, research in both industry and academia has designed a considerable number of tools to scale software-defined networks, in preparation for the wide deployment in wide-area networks. In this paper, we survey the mechanisms that can be used to address the scalability issues in software-defined wide-area networks. Starting from a successful distributed system, the Domain Name System, we discuss the essential elements to make a large scale network infrastructure scalable. Then, the existing technologies proposed in the literature are reviewed in three categories: scaling out/up the data plane and scaling the control plane. We conclude with possible research directions towards scaling software-defined wide-area networks.

Bin Sun, Shutao Li, Jun Sun.  2014.  Scanned Image Descreening With Image Redundancy and Adaptive Filtering. Image Processing, IEEE Transactions on. 23:3698-3710.

Currently, most electrophotographic printers use halftoning technique to print continuous tone images, so scanned images obtained from such hard copies are usually corrupted by screen like artifacts. In this paper, a new model of scanned halftone image is proposed to consider both printing distortions and halftone patterns. Based on this model, an adaptive filtering based descreening method is proposed to recover high quality contone images from the scanned images. Image redundancy based denoising algorithm is first adopted to reduce printing noise and attenuate distortions. Then, screen frequency of the scanned image and local gradient features are used for adaptive filtering. Basic contone estimate is obtained by filtering the denoised scanned image with an anisotropic Gaussian kernel, whose parameters are automatically adjusted with the screen frequency and local gradient information. Finally, an edge-preserving filter is used to further enhance the sharpness of edges to recover a high quality contone image. Experiments on real scanned images demonstrate that the proposed method can recover high quality contone images from the scanned images. Compared with the state-of-the-art methods, the proposed method produces very sharp edges and much cleaner smooth regions.

Williams, Laurie.  2019.  Science Leaves Clues. IEEE Security Privacy. 17:4–6.
The elusive science of security. Science advances when research results build upon prior findings through the evolution of hypotheses and theories about the fundamental relationships among variables within a context and considering the threats and limitations of the work. Some hypothesize that, through this science of security, the industry can take a more principled and systematic approach to securing systems, rather than reacting to the latest move by attackers. Others debate the utility of a science of security.
Zeng, Ming, Zhang, Kai, Qian, Haifeng, Chen, Xiaofeng, Chen, Jie, Mu, Yi.  2019.  A Searchable Asymmetric Encryption Scheme with Support for Boolean Queries for Cloud Applications. The Computer Journal. 62:563–578.
Cloud computing is a new promising technology paradigm that can provide clients from the whole network with scalable storage resources and on-demand high-quality services. However, security concerns are raised when sensitive data are outsourced. Searchable encryption is a kind of cryptographic primitive that enables clients to selectively retrieve encrypted data, the existing schemes that support for sub-linear boolean queries are only considered in symmetric key setting, which makes a limitation for being widely deployed in many cloud applications. In order to address this issue, we propose a novel searchable asymmetric encryption scheme to support for sub-linear boolean query over encrypted data in a multi-client model that is extracted from an important observation that the outsourced database in cloud is continuously contributed and searched by multiple clients. For the purpose of introducing the scheme, we combine both the ideas of symmetric searchable encryption and public key searchable encryption and then design a novel secure inverted index. Furthermore, a detailed security analysis for our scheme is given under the simulation-based security definition. Finally, we conduct experiments for our construction on a real dataset (Enron) along with a performance analysis to show its practicality.