Visible to the public Biblio

Found 150 results

Filters: First Letter Of Title is V  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U [V] W X Y Z   [Show ALL]
Z
Zhao, J., Kong, K., Hei, X., Tu, Y., Du, X..  2018.  A Visible Light Channel Based Access Control Scheme for Wireless Insulin Pump Systems. 2018 IEEE International Conference on Communications (ICC). :1–6.
Smart personal insulin pumps have been widely adopted by type 1 diabetes. However, many wireless insulin pump systems lack security mechanisms to protect them from malicious attacks. In previous works, the read-write attacks over RF channels can be launched stealthily and could jeopardize patients' lives. Protecting patients from such attacks is urgent. To address this issue, we propose a novel visible light channel based access control scheme for wireless infusion insulin pumps. This scheme employs an infrared photodiode sensor as a receiver in an insulin pump, and an infrared LED as an emitter in a doctor's reader (USB) to transmit a PIN/shared key to authenticate the doctor's USB. The evaluation results demonstrate that our scheme can reliably pass the authentication process with a low false accept rate (0.05% at a distance of 5cm).
Zhao, Guowei, Zhao, Rui, Wang, Qiang, Xue, Hui, Luo, Fang.  2019.  Virtual Network Mapping Algorithm for Self-Healing of Distribution Network. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1442–1445.
This paper focuses on how to provide virtual network (VN) with the survivability of node failure. In the SVNE that responds to node failures, the backup mechanism provided by the VN initial mapping method should be as flexible as possible, so that backup resources can be shared among the VNs, thereby providing survivability support for the most VNs with the least backup overhead, which can improve The utilization of backup resources can also improve the survivability of VN to deal with multi-node failures. For the remapping method of virtual networks, it needs to be higher because it involves both remapping of virtual nodes and remapping of related virtual links. The remapping efficiency, so as to restore the affected VN to a normal state as soon as possible, to avoid affecting the user's business experience. Considering that the SVNE method that actively responds to node failures always has a certain degree of backup resource-specific phenomenon, this section provides a SVNE method that passively responds to node failures. This paper mainly introduces the survivability virtual network initial mapping method based on physical node recoverability in this method.
Zhang, T., Zheng, H., Zhang, L..  2018.  Verification CAPTCHA Based on Deep Learning. 2018 37th Chinese Control Conference (CCC). :9056–9060.
At present, the captcha is widely used in the Internet. The method of captcha recognition using the convolutional neural networks was introduced in this paper. It was easier to apply the convolution neural network model of simple training to segment the captcha, and the network structure was established imitating VGGNet model. and the correct rate can be reached more than 90%. For the more difficult segmentation captcha, it can be used the end-to-end thought to the captcha as a whole to training, In this way, the recognition rate of the more difficult segmentation captcha can be reached about 85%.
Zhang, Hao, Zhang, Tao, Chen, Huajin.  2017.  Variance Analysis of Pixel-Value Differencing Steganography. Proceedings of the 2017 International Conference on Cryptography, Security and Privacy. :28–32.

As the adaptive steganography selects edge and texture area for loading, the theoretical analysis is limited by modeling difficulty. This paper introduces a novel method to study pixel-value difference (PVD) embedding scheme. First, the difference histogram values of cover image are used as parameters, and a variance formula for PVD stego noise is obtained. The accuracy of this formula has been verified through analysis with standard pictures. Second, the stego noise is divided into six kinds of pixel regions, and the regional noise variances are utilized to compare the security between PVD and least significant bit matching (LSBM) steganography. A mathematical conclusion is presented that, with the embedding capacity less than 2.75 bits per pixel, PVD is always not safer than LSBM under the same embedding rate, regardless of region selection. Finally, 10000 image samples are used to observe the validity of mathematical conclusion. For most images and regions, the data are also shown to be consistent with the prior judgment. Meanwhile, the cases of exception are analyzed seriously, and are found to be caused by randomness of pixel selection and abandoned blocks in PVD scheme. In summary, the unity of theory and practice completely indicates the effectiveness of our new method.

Y
Yu, F., Chen, L., Zhang, H..  2016.  Virtual TPM Dynamic Trust Extension Suitable for Frequent Migrations. 2016 IEEE Trustcom/BigDataSE/ISPA. :57–65.

This paper has presented an approach of vTPM (virtual Trusted Platform Module) Dynamic Trust Extension (DTE) to satisfy the requirements of frequent migrations. With DTE, vTPM is a delegation of the capability of signing attestation data from the underlying pTPM (physical TPM), with one valid time token issued by an Authentication Server (AS). DTE maintains a strong association between vTPM and its underlying pTPM, and has clear distinguishability between vTPM and pTPM because of the different security strength of the two types of TPM. In DTE, there is no need for vTPM to re-acquire Identity Key (IK) certificate(s) after migration, and pTPM can have a trust revocation in real time. Furthermore, DTE can provide forward security. Seen from the performance measurements of its prototype, DTE is feasible.

Yoon, Man-Ki, Liu, Bo, Hovakimyan, Naira, Sha, Lui.  2017.  VirtualDrone: Virtual Sensing, Actuation, and Communication for Attack-resilient Unmanned Aerial Systems. Proceedings of the 8th International Conference on Cyber-Physical Systems. :143–154.

As modern unmanned aerial systems (UAS) continue to expand the frontiers of automation, new challenges to security and thus its safety are emerging. It is now difficult to completely secure modern UAS platforms due to their openness and increasing complexity. We present the VirtualDrone Framework, a software architecture that enables an attack-resilient control of modern UAS. It allows the system to operate with potentially untrustworthy software environment by virtualizing the sensors, actuators, and communication channels. The framework provides mechanisms to monitor physical and logical system behaviors and to detect security and safety violations. Upon detection of such an event, the framework switches to a trusted control mode in order to override malicious system state and to prevent potential safety violations. We built a prototype quadcoper running an embedded multicore processor that features a hardware-assisted virtualization technology. We present extensive experimental study and implementation details, and demonstrate how the framework can ensure the robustness of the UAS in the presence of security breaches.

Ye, Katherine Q., Green, Matthew, Sanguansin, Naphat, Beringer, Lennart, Petcher, Adam, Appel, Andrew W..  2017.  Verified Correctness and Security of mbedTLS HMAC-DRBG. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2007–2020.
We have formalized the functional specification of HMAC-DRBG (NIST 800-90A), and we have proved its cryptographic security-that its output is pseudorandom–using a hybrid game-based proof. We have also proved that the mbedTLS implementation (C program) correctly implements this functional specification. That proof composes with an existing C compiler correctness proof to guarantee, end-to-end, that the machine language program gives strong pseudorandomness. All proofs (hybrid games, C program verification, compiler, and their composition) are machine-checked in the Coq proof assistant. Our proofs are modular: the hybrid game proof holds on any implementation of HMAC-DRBG that satisfies our functional specification. Therefore, our functional specification can serve as a high-assurance reference.
Ye, Fanghan, Dong, Xiaolei, Shen, Jiachen, Cao, Zhenfu, Zhao, Wenhua.  2019.  A Verifiable Dynamic Multi-user Searchable Encryption Scheme without Trusted Third Parties. 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS). :896–900.
Searchable encryption is a cryptographic primitive that allows users to search for keywords on encrypted data. It allows users to search in archives stored on cloud servers. Among searchable encryption schemes, those supporting multiuser settings are more suitable for daily application scenarios and more practical. However, since the cloud server is semi-trusted, the result set returned by the server is undefined, and most existing multi-user searchable encryption schemes rely heavily on trusted third parties to manage user permission. To address these problems, verifiable multi-user searchable encryption schemes with dynamic management of user search permissions, weak trust on trusted third parties and are desirable. In this paper, we propose such a scheme. Our scheme manages user permission and key distribution without a trusted third party. User search permission and user access permission matrices are generated separately to manage user permissions dynamically. In addition, our scheme can verify the result set returned by the cloud server. We also show that our scheme is index and trapdoor indistinguishable under chosen keyword attacks in the random oracle model. Finally, a detailed comparison experiment is made by using the actual document data set, and the results show that our scheme is efficient and practical.
Yao, Y., Xiao, B., Wu, G., Liu, X., Yu, Z., Zhang, K., Zhou, X..  2017.  Voiceprint: A Novel Sybil Attack Detection Method Based on RSSI for VANETs. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :591–602.

Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications that bring many benefits and conveniences to improve the road safety and drive comfort in future transportation systems. Sybil attack is considered one of the most risky threats in VANETs since a Sybil attacker can generate multiple fake identities with false messages to severely impair the normal functions of safety-related applications. In this paper, we propose a novel Sybil attack detection method based on Received Signal Strength Indicator (RSSI), Voiceprint, to conduct a widely applicable, lightweight and full-distributed detection for VANETs. To avoid the inaccurate position estimation according to predefined radio propagation models in previous RSSI-based detection methods, Voiceprint adopts the RSSI time series as the vehicular speech and compares the similarity among all received time series. Voiceprint does not rely on any predefined radio propagation model, and conducts independent detection without the support of the centralized infrastructure. It has more accurate detection rate in different dynamic environments. Extensive simulations and real-world experiments demonstrate that the proposed Voiceprint is an effective method considering the cost, complexity and performance.

X
Xu, Tangwei, Lu, Xiaozhen, Xiao, Liang, Tang, Yuliang, Dai, Huaiyu.  2019.  Voltage Based Authentication for Controller Area Networks with Reinforcement Learning. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–5.
Controller area networks (CANs) are vulnerable to spoofing attacks such as frame falsifying attacks, as electronic control units (ECUs) send and receive messages without any authentication and encryption. In this paper, we propose a physical authentication scheme that exploits the voltage features of the ECU signals on the CAN bus and applies reinforcement learning to choose the authentication mode such as the protection level and test threshold. This scheme enables a monitor node to optimize the authentication mode via trial-and-error without knowing the CAN bus signal model and spoofing model. Experimental results show that the proposed authentication scheme can significantly improve the authentication accuracy and response compared with a benchmark scheme.
Xu, Dongyan.  2014.  Virtualization and Security: Happily Ever After? Proceedings of the 4th ACM Conference on Data and Application Security and Privacy. :73–74.

Virtualization has been a major enabling technology for improving trustworthiness and tamper-resistance of computer security functions. In the past decade, we have witnessed the development of virtualization-based techniques for attack/malware monitoring, detection, prevention, and profiling. Virtual platforms have been widely adopted for system security experimentation and evaluation, because of their strong isolation, maneuverability, and scalability properties. Conversely, the demand from security research has led to significant advances in virtualization technology itself, for example, in the aspects of virtual machine introspection, check-pointing, and replay. In this talk, I will present an overview of research efforts (including our own) in virtualization-based security and security-driven virtualization. I will also discuss a number of challenges and opportunities in maintaining and elevating the synergies between virtualization and security.

Xu, A., Dai, T., Chen, H., Ming, Z., Li, W..  2018.  Vulnerability Detection for Source Code Using Contextual LSTM. 2018 5th International Conference on Systems and Informatics (ICSAI). :1225–1230.

With the development of Internet technology, software vulnerabilities have become a major threat to current computer security. In this work, we propose the vulnerability detection for source code using Contextual LSTM. Compared with CNN and LSTM, we evaluated the CLSTM on 23185 programs, which are collected from SARD. We extracted the features through the program slicing. Based on the features, we used the natural language processing to analysis programs with source code. The experimental results demonstrate that CLSTM has the best performance for vulnerability detection, reaching the accuracy of 96.711% and the F1 score of 0.96984.

Xiong, Chen, Chen, Hua, Cai, Ming, Gao, Jing.  2019.  A Vehicle Trajectory Adversary Model Based on VLPR Data. 2019 5th International Conference on Transportation Information and Safety (ICTIS). :903–912.
Although transport agency has employed desensitization techniques to deal with the privacy information when publicizing vehicle license plate recognition (VLPR) data, the adversaries can still eavesdrop on vehicle trajectories by certain means and further acquire the associated person and vehicle information through background knowledge. In this work, a privacy attacking method by using the desensitized VLPR data is proposed to link the vehicle trajectory. First the road average speed is evaluated by analyzing the changes of traffic flow, which is used to estimate the vehicle's travel time to the next VLPR system. Then the vehicle suspicion list is constructed through the time relevance of neighboring VLPR systems. Finally, since vehicles may have the same features like color, type, etc, the target trajectory will be located by filtering the suspected list by the rule of qualified identifier (QI) attributes and closest time method. Based on the Foshan City's VLPR data, the method is tested and results show that correct vehicle trajectory can be linked, which proves that the current VLPR data publication way has the risk of privacy disclosure. At last, the effects of related parameters on the proposed method are discussed and effective suggestions are made for publicizing VLPR date in the future.
Xin, Wei, Wang, M., Shao, Shuai, Wang, Z., Zhang, Tao.  2015.  A variant of schnorr signature scheme for path-checking in RFID-based supply chains. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). :2608–2613.

The RFID technology has attracted considerable attention in recent years, and brings convenience to supply chain management. In this paper, we concentrate on designing path-checking protocols to check the valid paths in supply chains. By entering a valid path, the check reader can distinguish whether the tags have gone through the path or not. Based on modified schnorr signature scheme, we provide a path-checking method to achieve multi-signatures and final verification. In the end, we conduct security and privacy analysis to the scheme.

W
Wu, N., Farokhi, F., Smith, D., Kaafar, M. A..  2020.  The Value of Collaboration in Convex Machine Learning with Differential Privacy. 2020 IEEE Symposium on Security and Privacy (SP). :304–317.
In this paper, we apply machine learning to distributed private data owned by multiple data owners, entities with access to non-overlapping training datasets. We use noisy, differentially-private gradients to minimize the fitness cost of the machine learning model using stochastic gradient descent. We quantify the quality of the trained model, using the fitness cost, as a function of privacy budget and size of the distributed datasets to capture the trade-off between privacy and utility in machine learning. This way, we can predict the outcome of collaboration among privacy-aware data owners prior to executing potentially computationally-expensive machine learning algorithms. Particularly, we show that the difference between the fitness of the trained machine learning model using differentially-private gradient queries and the fitness of the trained machine model in the absence of any privacy concerns is inversely proportional to the size of the training datasets squared and the privacy budget squared. We successfully validate the performance prediction with the actual performance of the proposed privacy-aware learning algorithms, applied to: financial datasets for determining interest rates of loans using regression; and detecting credit card frauds using support vector machines.
Wu, F., Wang, J., Liu, J., Wang, W..  2017.  Vulnerability detection with deep learning. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1298–1302.
Vulnerability detection is an import issue in information system security. In this work, we propose the deep learning method for vulnerability detection. We present three deep learning models, namely, convolution neural network (CNN), long short term memory (LSTM) and convolution neural network — long short term memory (CNN-LSTM). In order to test the performance of our approach, we collected 9872 sequences of function calls as features to represent the patterns of binary programs during their execution. We apply our deep learning models to predict the vulnerabilities of these binary programs based on the collected data. The experimental results show that the prediction accuracy of our proposed method reaches 83.6%, which is superior to that of traditional method like multi-layer perceptron (MLP).
Wilcox, James R., Flanagan, Cormac, Freund, Stephen N..  2018.  VerifiedFT: A Verified, High-Performance Precise Dynamic Race Detector. Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. :354-367.

Dynamic data race detectors are valuable tools for testing and validating concurrent software, but to achieve good performance they are typically implemented using sophisticated concurrent algorithms. Thus, they are ironically prone to the exact same kind of concurrency bugs they are designed to detect. To address these problems, we have developed VerifiedFT, a clean slate redesign of the FastTrack race detector [19]. The VerifiedFT analysis provides the same precision guarantee as FastTrack, but is simpler to implement correctly and efficiently, enabling us to mechanically verify an implementation of its core algorithm using CIVL [27]. Moreover, VerifiedFT provides these correctness guarantees without sacrificing any performance over current state-of-the-art (but complex and unverified) FastTrack implementations for Java.

Wei, Shengjun, Zhong, Hao, Shan, Chun, Ye, Lin, Du, Xiaojiang, Guizani, Mohsen.  2018.  Vulnerability Prediction Based on Weighted Software Network for Secure Software Building. 2018 IEEE Global Communications Conference (GLOBECOM). :1-6.

To build a secure communications software, Vulnerability Prediction Models (VPMs) are used to predict vulnerable software modules in the software system before software security testing. At present many software security metrics have been proposed to design a VPM. In this paper, we predict vulnerable classes in a software system by establishing the system's weighted software network. The metrics are obtained from the nodes' attributes in the weighted software network. We design and implement a crawler tool to collect all public security vulnerabilities in Mozilla Firefox. Based on these data, the prediction model is trained and tested. The results show that the VPM based on weighted software network has a good performance in accuracy, precision, and recall. Compared to other studies, it shows that the performance of prediction has been improved greatly in Pr and Re.

Wang, Weina, Ying, Lei, Zhang, Junshan.  2016.  The Value of Privacy: Strategic Data Subjects, Incentive Mechanisms and Fundamental Limits. Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science. :249–260.

We study the value of data privacy in a game-theoretic model of trading private data, where a data collector purchases private data from strategic data subjects (individuals) through an incentive mechanism. The private data of each individual represents her knowledge about an underlying state, which is the information that the data collector desires to learn. Different from most of the existing work on privacy-aware surveys, our model does not assume the data collector to be trustworthy. Then, an individual takes full control of its own data privacy and reports only a privacy-preserving version of her data. In this paper, the value of ε units of privacy is measured by the minimum payment of all nonnegative payment mechanisms, under which an individual's best response at a Nash equilibrium is to report the data with a privacy level of ε. The higher ε is, the less private the reported data is. We derive lower and upper bounds on the value of privacy which are asymptotically tight as the number of data subjects becomes large. Specifically, the lower bound assures that it is impossible to use less amount of payment to buy ε units of privacy, and the upper bound is given by an achievable payment mechanism that we designed. Based on these fundamental limits, we further derive lower and upper bounds on the minimum total payment for the data collector to achieve a given learning accuracy target, and show that the total payment of the designed mechanism is at most one individual's payment away from the minimum.

Wang, Q., Geiger, R. L..  2017.  Visible but Transparent Hardware Trojans in Clock Generation Circuits. 2017 IEEE National Aerospace and Electronics Conference (NAECON). :354–357.

Hardware Trojans that can be easily embedded in synchronous clock generation circuits typical of what are used in large digital systems are discussed. These Trojans are both visible and transparent. Since they are visible, they will penetrate split-lot manufacturing security methods and their transparency will render existing detection methods ineffective.

Wang, Jiye, Sun, Yuyan, Miao, Siwei, Shi, Zhiqiang, Sun, Limin.  2018.  Vulnerability and Protocol Association of Device Firmware in Power Grid. 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). :259-263.

The intelligent power grid is composed of a large number of industrial control equipment, and most of the industrial control equipment has security holes, which are vulnerable to malicious attacks and affect the normal operation of the power grid. By analyzing the security vulnerability of the firmware of industrial control equipment, the vulnerability can be detected in advance and the power grid's ability to resist attack can be improved. In this paper, a kind of industrial control device firmware protocol vulnerabilities associated technology, through the technology of information extraction from the mass grid device firmware device attributes and extract the industrial control system, the characteristics of the construction of industrial control system device firmware and published vulnerability information correlation, faster in the industrial control equipment safety inspection found vulnerabilities.

Wang, Bo, Wang, Xunting.  2018.  Vulnerability Assessment Method for Cyber Physical Power System Considering Node Heterogeneity. 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :1109-1113.
In order to make up for the shortcomings of traditional evaluation methods neglecting node difference, a vulnerability assessment method considering node heterogeneity for cyber physical power system (CPPS) is proposed. Based on the entropy of the power flow and complex network theory, we establish heterogeneity evaluation index system for CPPS, which considers the survivability of island survivability and short-term operation of the communication network. For mustration, hierarchical CPPS model and distributed CPPS model are established respectively based on partitioning characteristic and different relationships of power grid and communication network. Simulation results show that distributed system is more robust than hierarchical system of different weighting factor whether under random attack or deliberate attack and a hierarchical system is more sensitive to the weighting factor. The proposed method has a better recognition effect on the equilibrium of the network structure and can assess the vulnerability of CPPS more accurately.
W. Huang, J. Gu, X. Ma.  2015.  "Visual tracking based on compressive sensing and particle filter". 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). :1435-1440.

A robust appearance model is usually required in visual tracking, which can handle pose variation, illumination variation, occlusion and many other interferences occurring in video. So far, a number of tracking algorithms make use of image samples in previous frames to update appearance models. There are many limitations of that approach: 1) At the beginning of tracking, there exists no sufficient amount of data for online update because these adaptive models are data-dependent and 2) in many challenging situations, robustly updating the appearance models is difficult, which often results in drift problems. In this paper, we proposed a tracking algorithm based on compressive sensing theory and particle filter framework. Features are extracted by random projection with data-independent basis. Particle filter is employed to make a more accurate estimation of the target location and make much of the updated classifier. The robustness and the effectiveness of our tracker have been demonstrated in several experiments.

V
Vincur, J., Navrat, P., Polasek, I..  2017.  VR City: Software Analysis in Virtual Reality Environment. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :509–516.
This paper presents software visualization tool that utilizes the modified city metaphor to represent software system and related analysis data in virtual reality environment. To better address all three kinds of software aspects we propose a new layouting algorithm that provides a higher level of detail and position the buildings according to the coupling between classes that they represent. Resulting layout allows us to visualize software metrics and source code modifications at the granularity of methods, visualize method invocations involved in program execution and to support the remodularization analysis. To further reduce the cognitive load and increase efficiency of 3D visualization we allow users to observe and interact with our city in immersive virtual reality environment that also provides a source code browsing feature. We demonstrate the use of our approach on two open-source systems.