Visible to the public Biblio

Found 12254 results

Beasley, C., Venayagamoorthy, G.K., Brooks, R..  2014.  Cyber security evaluation of synchrophasors in a power system. Power Systems Conference (PSC), 2014 Clemson University. :1-5.

The addition of synchrophasors such as phasor measurement units (PMUs) to the existing power grid will enhance real-time monitoring and analysis of the grid. The PMU collects bus voltage, line current, and frequency measurements and uses the communication network to send the measurements to the respective substation(s)/control center(s). Since this approach relies on network infrastructure, possible cyber security vulnerabilities have to be addressed to ensure that is stable, secure, and reliable. In this paper, security vulnerabilities associated with a synchrophasor network in a benchmark IEEE 68 bus (New England/New York) power system model are examined. Currently known feasible attacks are demonstrated. Recommended testing and verification methods are also presented.

Zonouz, S., Davis, C.M., Davis, K.R., Berthier, R., Bobba, R.B., Sanders, W.H..  2014.  SOCCA: A Security-Oriented Cyber-Physical Contingency Analysis in Power Infrastructures. Smart Grid, IEEE Transactions on. 5:3-13.

Contingency analysis is a critical activity in the context of the power infrastructure because it provides a guide for resiliency and enables the grid to continue operating even in the case of failure. In this paper, we augment this concept by introducing SOCCA, a cyber-physical security evaluation technique to plan not only for accidental contingencies but also for malicious compromises. SOCCA presents a new unified formalism to model the cyber-physical system including interconnections among cyber and physical components. The cyber-physical contingency ranking technique employed by SOCCA assesses the potential impacts of events. Contingencies are ranked according to their impact as well as attack complexity. The results are valuable in both cyber and physical domains. From a physical perspective, SOCCA scores power system contingencies based on cyber network configuration, whereas from a cyber perspective, control network vulnerabilities are ranked according to the underlying power system topology.

Chiaradonna, S., Di Giandomenico, F., Murru, N..  2014.  On a Modeling Approach to Analyze Resilience of a Smart Grid Infrastructure. Dependable Computing Conference (EDCC), 2014 Tenth European. :166-177.

The evolution of electrical grids, both in terms of enhanced ICT functionalities to improve efficiency, reliability and economics, as well as the increasing penetration of renewable redistributed energy resources, results in a more sophisticated electrical infrastructure which poses new challenges from several perspectives, including resilience and quality of service analysis. In addition, the presence of interdependencies, which more and more characterize critical infrastructures (including the power sector), exacerbates the need for advanced analysis approaches, to be possibly employed since the early phases of the system design, to identify vulnerabilities and appropriate countermeasures. In this paper, we outline an approach to model and analyze smart grids and discuss the major challenges to be addressed in stochastic model-based analysis to account for the peculiarities of the involved system elements. Representation of dynamic and flexible behavior of generators and loads, as well as representation of the complex ICT control functions required to preserve and/or re-establish electrical equilibrium in presence of changes need to be faced to assess suitable indicators of the resilience and quality of service of the smart grid.

Yingmeng Xiang, Lingfeng Wang, Yichi Zhang.  2014.  Power system adequacy assessment with probabilistic cyber attacks against breakers. PES General Meeting | Conference Exposition, 2014 IEEE. :1-5.

Modern power systems heavily rely on the associated cyber network, and cyber attacks against the control network may cause undesired consequences such as load shedding, equipment damage, and so forth. The behaviors of the attackers can be random, thus it is crucial to develop novel methods to evaluate the adequacy of the power system under probabilistic cyber attacks. In this study, the external and internal cyber structures of the substation are introduced, and possible attack paths against the breakers are analyzed. The attack resources and vulnerability factors of the cyber network are discussed considering their impacts on the success probability of a cyber attack. A procedure integrating the reliability of physical components and the impact of cyber attacks against breakers are proposed considering the behaviors of the physical devices and attackers. Simulations are conducted based on the IEEE RTS79 system. The impact of the attack resources and attack attempt numbers are analyzed for attackers from different threats groups. It is concluded that implementing effective cyber security measures is crucial to the cyber-physical power grids.

Yihai Zhu, Jun Yan, Yufei Tang, Sun, Y.L., Haibo He.  2014.  Resilience Analysis of Power Grids Under the Sequential Attack. Information Forensics and Security, IEEE Transactions on. 9:2340-2354.

The modern society increasingly relies on electrical service, which also brings risks of catastrophic consequences, e.g., large-scale blackouts. In the current literature, researchers reveal the vulnerability of power grids under the assumption that substations/transmission lines are removed or attacked synchronously. In reality, however, it is highly possible that such removals can be conducted sequentially. Motivated by this idea, we discover a new attack scenario, called the sequential attack, which assumes that substations/transmission lines can be removed sequentially, not synchronously. In particular, we find that the sequential attack can discover many combinations of substation whose failures can cause large blackout size. Previously, these combinations are ignored by the synchronous attack. In addition, we propose a new metric, called the sequential attack graph (SAG), and a practical attack strategy based on SAG. In simulations, we adopt three test benchmarks and five comparison schemes. Referring to simulation results and complexity analysis, we find that the proposed scheme has strong performance and low complexity.

Yang, Y., McLaughlin, K., Sezer, S., Littler, T., Im, E.G., Pranggono, B., Wang, H.F..  2014.  Multiattribute SCADA-Specific Intrusion Detection System for Power Networks. Power Delivery, IEEE Transactions on. 29:1092-1102.

The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.

Shipman, C.M., Hopkinson, K.M., Lopez, J..  2015.  Con-Resistant Trust for Improved Reliability in a Smart-Grid Special Protection System. Power Delivery, IEEE Transactions on. 30:455-462.

This paper applies a con-resistant trust mechanism to improve the performance of a communications-based special protection system to enhance its effectiveness and resiliency. Smart grids incorporate modern information technologies to increase reliability and efficiency through better situational awareness. However, with the benefits of this new technology come the added risks associated with threats and vulnerabilities to the technology and to the critical infrastructure it supports. The research in this paper uses con-resistant trust to quickly identify malicious or malfunctioning (untrustworthy) protection system nodes to mitigate instabilities. The con-resistant trust mechanism allows protection system nodes to make trust assessments based on the node's cooperative and defective behaviors. These behaviors are observed via frequency readings which are prediodically reported. The trust architecture is tested in experiments by comparing a simulated special protection system with a con-resistant trust mechanism to one without the mechanism via an analysis of the variance statistical model. Simulation results show promise for the proposed con-resistant trust mechanism.

Marashi, K., Sarvestani, S.S..  2014.  Towards Comprehensive Modeling of Reliability for Smart Grids: Requirements and Challenges. High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on. :105-112.

Smart grids utilize computation and communication to improve the efficacy and dependability of power generation, transmission, and distribution. As such, they are among the most critical and complex cyber-physical systems. The success of smart grids in achieving their stated goals is yet to be rigorously proven. In this paper, our focus is on improvements (or lack thereof) in reliability. We discuss vulnerabilities in the smart grid and their potential impact on its reliability, both generally and for the specific example of the IEEE-14 bus system. We conclude the paper by presenting a preliminary Markov imbedded systems model for reliability of smart grids and describe how it can be evolved to capture the vulnerabilities discussed.

Sgouras, K.I., Birda, A.D., Labridis, D.P..  2014.  Cyber attack impact on critical Smart Grid infrastructures. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Electrical Distribution Networks face new challenges by the Smart Grid deployment. The required metering infrastructures add new vulnerabilities that need to be taken into account in order to achieve Smart Grid functionalities without considerable reliability trade-off. In this paper, a qualitative assessment of the cyber attack impact on the Advanced Metering Infrastructure (AMI) is initially attempted. Attack simulations have been conducted on a realistic Grid topology. The simulated network consisted of Smart Meters, routers and utility servers. Finally, the impact of Denial-of-Service and Distributed Denial-of-Service (DoS/DDoS) attacks on distribution system reliability is discussed through a qualitative analysis of reliability indices.

Ming Shange, Jingqiang Lin, Xiaokun Zhang, Changwei Xu.  2014.  A game-theory analysis of the rat-group attack in smart grids. Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on. :1-6.

More and more intelligent functions are proposed, designed and implemented in meters to make the power supply be smart. However, these complex functions also bring risks to the smart meters, and they become susceptible to vulnerabilities and attacks. We present the rat-group attack in this paper, which exploits the vulnerabilities of smart meters in the cyber world, but spreads in the physical world due to the direct economic benefits. To the best of our knowledge, no systematic work has been conducted on this attack. Game theory is then applied to analyze this attack, and two game models are proposed and compared under different assumptions. The analysis results suggest that the power company shall follow an open defense policy: disclosing the defense parameters to all users (i.e., the potential attackers), results in less loss in the attack.

Mohagheghi, S..  2014.  Integrity Assessment Scheme for Situational Awareness in Utility Automation Systems. Smart Grid, IEEE Transactions on. 5:592-601.

Today's more reliable communication technology, together with the availability of higher computational power, have paved the way for introduction of more advanced automation systems based on distributed intelligence and multi-agent technology. However, abundance of data, while making these systems more powerful, can at the same time act as their biggest vulnerability. In a web of interconnected devices and components functioning within an automation framework, potential impact of malfunction in a single device, either through internal failure or external damage/intrusion, may lead to detrimental side-effects spread across the whole underlying system. The potentially large number of devices, along with their inherent interrelations and interdependencies, may hinder the ability of human operators to interpret events, identify their scope of impact and take remedial actions if necessary. Through utilization of the concepts of graph-theoretic fuzzy cognitive maps (FCM) and expert systems, this paper puts forth a solution that is able to reveal weak links and vulnerabilities of an automation system, should it become exposed to partial internal failure or external damage. A case study has been performed on the IEEE 34-bus test distribution system to show the efficiency of the proposed scheme.

Xiang, Yingmeng, Zhang, Yichi, Wang, Lingfeng, Sun, Weiqing.  2014.  Impact of UPFC on power system reliability considering its cyber vulnerability. T D Conference and Exposition, 2014 IEEE PES. :1-5.

The unified power flow controller (UPFC) has attracted much attention recently because of its capability in controlling the active and reactive power flows. The normal operation of UPFC is dependent on both its physical part and the associated cyber system. Thus malicious cyber attacks may impact the reliability of UPFC. As more information and communication technologies are being integrated into the current power grid, more frequent occurrences of cyber attacks are possible. In this paper, the cyber architecture of UPFC is analyzed, and the possible attack scenarios are considered and discussed. Based on the interdependency of the physical part and the cyber part, an integrated reliability model for UPFC is proposed and analyzed. The impact of UPFC on the overall system reliability is examined, and it is shown that cyber attacks against UPFC may yield an adverse influence.

Chen, K.Y., Heckel-Jones, C.A.C., Maupin, N.G., Rubin, S.M., Bogdanor, J.M., Zhenyu Guo, Haimes, Y.Y..  2014.  Risk analysis of GPS-dependent critical infrastructure system of systems. Systems and Information Engineering Design Symposium (SIEDS), 2014. :316-321.

The Department of Energy seeks to modernize the U.S. electric grid through the SmartGrid initiative, which includes the use of Global Positioning System (GPS)-timing dependent electric phasor measurement units (PMUs) for continual monitoring and automated controls. The U.S. Department of Homeland Security is concerned with the associated risks of increased utilization of GPS timing in the electricity subsector, which could in turn affect a large number of electricity-dependent Critical Infrastructure (CI) sectors. Exploiting the vulnerabilities of GPS systems in the electricity subsector can result to large-scale and costly blackouts. This paper seeks to analyze the risks of increased dependence of GPS into the electric grid through the introduction of PMUs and provides a systems engineering perspective to the GPS-dependent System of Systems (S-o-S) created by the SmartGrid initiative. The team started by defining and modeling the S-o-S followed by usage of a risk analysis methodology to identify and measure risks and evaluate solutions to mitigating the effects of the risks. The team expects that the designs and models resulting from the study will prove useful in terms of determining both current and future risks to GPS-dependent CIs sectors along with the appropriate countermeasures as the United States moves towards a SmartGrid system.

Chen, R.L.-Y., Cohn, A., Neng Fan, Pinar, A..  2014.  Contingency-Risk Informed Power System Design. Power Systems, IEEE Transactions on. 29:2087-2096.

We consider the problem of designing (or augmenting) an electric power system at a minimum cost such that it satisfies the N-k-ε survivability criterion. This survivability criterion is a generalization of the well-known N-k criterion, and it requires that at least (1-εj) fraction of the steady-state demand be met after failures of j components, for j=0,1,...,k. The network design problem adds another level of complexity to the notoriously hard contingency analysis problem, since the contingency analysis is only one of the requirements for the design optimization problem. We present a mixed-integer programming formulation of this problem that takes into account both transmission and generation expansion. We propose an algorithm that can avoid combinatorial explosion in the number of contingencies, by seeking vulnerabilities in intermediary solutions and constraining the design space accordingly. Our approach is built on our ability to identify such system vulnerabilities quickly. Our empirical studies on modified instances of the IEEE 30-bus and IEEE 57-bus systems show the effectiveness of our methods. We were able to solve the transmission and generation expansion problems for k=4 in approximately 30 min, while other approaches failed to provide a solution at the end of 2 h.

Sierla, S., Hurkala, M., Charitoudi, K., Chen-Wei Yang, Vyatkin, V..  2014.  Security risk analysis for smart grid automation. Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on. :1737-1744.

The reliability theory used in the design of complex systems including electric grids assumes random component failures and is thus unsuited to analyzing security risks due to attackers that intentionally damage several components of the system. In this paper, a security risk analysis methodology is proposed consisting of vulnerability analysis and impact analysis. Vulnerability analysis is a method developed by security engineers to identify the attacks that are relevant for the system under study, and in this paper, the analysis is applied on the communications network topology of the electric grid automation system. Impact analysis is then performed through co-simulation of automation and the electric grid to assess the potential damage from the attacks. This paper makes an extensive review of vulnerability and impact analysis methods and relevant system modeling techniques from the fields of security and industrial automation engineering, with a focus on smart grid automation, and then applies and combines approaches to obtain a security risk analysis methodology. The methodology is demonstrated with a case study of fault location, isolation and supply restoration smart grid automation.

Bo Chai, Zaiyue Yang, Jiming Chen.  2014.  Impacts of unreliable communication and regret matching based anti-jamming approach in smart grid. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Demand response management (DRM) is one of the main features in smart grid, which is realized via communications between power providers and consumers. Due to the vulnerabilities of communication channels, communication is not perfect in practice and will be threatened by jamming attack. In this paper, we consider jamming attack in the wireless communication for smart grid. Firstly, the DRM performance degradation introduced by unreliable communication is fully studied. Secondly, a regret matching based anti-jamming algorithm is proposed to enhance the performance of communication and DRM. Finally, numerical results are presented to illustrate the impacts of unreliable communication on DRM and the performance of the proposed anti-jamming algorithm.

Albasrawi, M.N., Jarus, N., Joshi, K.A., Sarvestani, S.S..  2014.  Analysis of Reliability and Resilience for Smart Grids. Computer Software and Applications Conference (COMPSAC), 2014 IEEE 38th Annual. :529-534.

Smart grids, where cyber infrastructure is used to make power distribution more dependable and efficient, are prime examples of modern infrastructure systems. The cyber infrastructure provides monitoring and decision support intended to increase the dependability and efficiency of the system. This comes at the cost of vulnerability to accidental failures and malicious attacks, due to the greater extent of virtual and physical interconnection. Any failure can propagate more quickly and extensively, and as such, the net result could be lowered reliability. In this paper, we describe metrics for assessment of two phases of smart grid operation: the duration before a failure occurs, and the recovery phase after an inevitable failure. The former is characterized by reliability, which we determine based on information about cascading failures. The latter is quantified using resilience, which can in turn facilitate comparison of recovery strategies. We illustrate the application of these metrics to a smart grid based on the IEEE 9-bus test system.

Yoshikawa, M., Goto, H., Asahi, K..  2014.  Error value driven fault analysis attack. Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2014 15th IEEE/ACIS International Conference on. :1-4.

The advanced encryption standard (AES) has been sufficiently studied to confirm that its decryption is computationally impossible. However, its vulnerability against fault analysis attacks has been pointed out in recent years. To verify the vulnerability of electronic devices in the future, into which cryptographic circuits have been incorporated, fault Analysis attacks must be thoroughly studied. The present study proposes a new fault analysis attack method which utilizes the tendency of an operation error due to a glitch. The present study also verifies the validity of the proposed method by performing evaluation experiments using FPGA.

Ketenci, S., Ulutas, G., Ulutas, M..  2014.  Detection of duplicated regions in images using 1D-Fourier transform. Systems, Signals and Image Processing (IWSSIP), 2014 International Conference on. :171-174.

Large number of digital images and videos are acquired, stored, processed and shared nowadays. High quality imaging hardware and low cost, user friendly image editing software make digital mediums vulnerable to modifications. One of the most popular image modification techniques is copy move forgery. This tampering technique copies part of an image and pastes it into another part on the same image to conceal or to replicate some part of the image. Researchers proposed many techniques to detect copy move forged regions of images recently. These methods divide image into overlapping blocks and extract features to determine similarity among group of blocks. Selection of the feature extraction algorithm plays an important role on the accuracy of detection methods. Column averages of 1D-FT of rows is used to extract features from overlapping blocks on the image. Blocks are transformed into frequency domain using 1D-FT of the rows and average values of the transformed columns form feature vectors. Similarity of feature vectors indicates possible forged regions. Results show that the proposed method can detect copy pasted regions with higher accuracy compared to similar works reported in the literature. The method is also more resistant against the Gaussian blurring or JPEG compression attacks as shown in the results.

Kulkarni, A., Metta, R..  2014.  A New Code Obfuscation Scheme for Software Protection. Service Oriented System Engineering (SOSE), 2014 IEEE 8th International Symposium on. :409-414.

IT industry loses tens of billions of dollars annually from security attacks such as tampering and malicious reverse engineering. Code obfuscation techniques counter such attacks by transforming code into patterns that resist the attacks. None of the current code obfuscation techniques satisfy all the obfuscation effectiveness criteria such as resistance to reverse engineering attacks and state space increase. To address this, we introduce new code patterns that we call nontrivial code clones and propose a new obfuscation scheme that combines nontrivial clones with existing obfuscation techniques to satisfy all the effectiveness criteria. The nontrivial code clones need to be constructed manually, thus adding to the development cost. This cost can be limited by cloning only the code fragments that need protection and by reusing the clones across projects. This makes it worthwhile considering the security risks. In this paper, we present our scheme and illustrate it with a toy example.

Shigen Shen, Hongjie Li, Risheng Han, Vasilakos, A.V., Yihan Wang, Qiying Cao.  2014.  Differential Game-Based Strategies for Preventing Malware Propagation in Wireless Sensor Networks. Information Forensics and Security, IEEE Transactions on. 9:1962-1973.

Wireless sensor networks (WSNs) are prone to propagating malware because of special characteristics of sensor nodes. Considering the fact that sensor nodes periodically enter sleep mode to save energy, we develop traditional epidemic theory and construct a malware propagation model consisting of seven states. We formulate differential equations to represent the dynamics between states. We view the decision-making problem between system and malware as an optimal control problem; therefore, we formulate a malware-defense differential game in which the system can dynamically choose its strategies to minimize the overall cost whereas the malware intelligently varies its strategies over time to maximize this cost. We prove the existence of the saddle-point in the game. Further, we attain optimal dynamic strategies for the system and malware, which are bang-bang controls that can be conveniently operated and are suitable for sensor nodes. Experiments identify factors that influence the propagation of malware. We also determine that optimal dynamic strategies can reduce the overall cost to a certain extent and can suppress the malware propagation. These results support a theoretical foundation to limit malware in WSNs.

Baraldi, A., Boschetti, L., Humber, M.L..  2014.  Probability Sampling Protocol for Thematic and Spatial Quality Assessment of Classification Maps Generated From Spaceborne/Airborne Very High Resolution Images. Geoscience and Remote Sensing, IEEE Transactions on. 52:701-760.

To deliver sample estimates provided with the necessary probability foundation to permit generalization from the sample data subset to the whole target population being sampled, probability sampling strategies are required to satisfy three necessary not sufficient conditions: 1) All inclusion probabilities be greater than zero in the target population to be sampled. If some sampling units have an inclusion probability of zero, then a map accuracy assessment does not represent the entire target region depicted in the map to be assessed. 2) The inclusion probabilities must be: a) knowable for nonsampled units and b) known for those units selected in the sample: since the inclusion probability determines the weight attached to each sampling unit in the accuracy estimation formulas, if the inclusion probabilities are unknown, so are the estimation weights. This original work presents a novel (to the best of these authors' knowledge, the first) probability sampling protocol for quality assessment and comparison of thematic maps generated from spaceborne/airborne very high resolution images, where: 1) an original Categorical Variable Pair Similarity Index (proposed in two different formulations) is estimated as a fuzzy degree of match between a reference and a test semantic vocabulary, which may not coincide, and 2) both symbolic pixel-based thematic quality indicators (TQIs) and sub-symbolic object-based spatial quality indicators (SQIs) are estimated with a degree of uncertainty in measurement in compliance with the well-known Quality Assurance Framework for Earth Observation (QA4EO) guidelines. Like a decision-tree, any protocol (guidelines for best practice) comprises a set of rules, equivalent to structural knowledge, and an order of presentation of the rule set, known as procedural knowledge. The combination of these two levels of knowledge makes an original protocol worth more than the sum of its parts. The several degrees of novelty of the proposed probability sampling protocol are highlighted in this paper, at the levels of understanding of both structural and procedural knowledge, in comparison with related multi-disciplinary works selected from the existing literature. In the experimental session, the proposed protocol is tested for accuracy validation of preliminary classification maps automatically generated by the Satellite Image Automatic Mapper (SIAM™) software product from two WorldView-2 images and one QuickBird-2 image provided by DigitalGlobe for testing purposes. In these experiments, collected TQIs and SQIs are statistically valid, statistically significant, consistent across maps, and in agreement with theoretical expectations, visual (qualitative) evidence and quantitative quality indexes of operativeness (OQIs) claimed for SIAM™ by related papers. As a subsidiary conclusion, the statistically consistent and statistically significant accuracy validation of the SIAM™ pre-classification maps proposed in this contribution, together with OQIs claimed for SIAM™ by related works, make the operational (automatic, accurate, near real-time, robust, scalable) SIAM™ software product eligible for opening up new inter-disciplinary research and market opportunities in accordance with the visionary goal of the Global Earth Observation System of Systems initiative and the QA4EO international guidelines.

Cardoso, L.S., Massouri, A., Guillon, B., Ferrand, P., Hutu, F., Villemaud, G., Risset, T., Gorce, J.-M..  2014.  CorteXlab: A facility for testing cognitive radio networks in a reproducible environment. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2014 9th International Conference on. :503-507.

While many theoretical and simulation works have highlighted the potential gains of cognitive radio, several technical issues still need to be evaluated from an experimental point of view. Deploying complex heterogeneous system scenarios is tedious, time consuming and hardly reproducible. To address this problem, we have developed a new experimental facility, called CorteXlab, that allows complex multi-node cognitive radio scenarios to be easily deployed and tested by anyone in the world. Our objective is not to design new software defined radio (SDR) nodes, but rather to provide a comprehensive access to a large set of high performance SDR nodes. The CorteXlab facility offers a 167 m2 electromagnetically (EM) shielded room and integrates a set of 24 universal software radio peripherals (USRPs) from National Instruments, 18 PicoSDR nodes from Nutaq and 42 IoT-Lab wireless sensor nodes from Hikob. CorteXlab is built upon the foundations of the SensLAB testbed and is based the free and open-source toolkit GNU Radio. Automation in scenario deployment, experiment start, stop and results collection is performed by an experiment controller, called Minus. CorteXlab is in its final stages of development and is already capable of running test scenarios. In this contribution, we show that CorteXlab is able to easily cope with the usual issues faced by other testbeds providing a reproducible experiment environment for CR experimentation.

Lichen Zhang.  2014.  Convergence of physical system and cyber system modeling methods for aviation cyber physical control system. Information and Automation (ICIA), 2014 IEEE International Conference on. :542-547.

Recent attention to aviation cyber physical systems (ACPS) is driven by the need for seamless integration of design disciplines that dominate physical world and cyber world convergence. System convergence is a big obstacle to good aviation cyber-physical system (ACPS) design, which is due to a lack of an adequate scientific theoretical foundation for the subject. The absence of a good understanding of the science of aviation system convergence is not due to neglect, but rather due to its difficulty. Most complex aviation system builders have abandoned any science or engineering discipline for system convergence they simply treat it as a management problem. Aviation System convergence is almost totally absent from software engineering and engineering curricula. Hence, system convergence is particularly challenging in ACPS where fundamentally different physical and computational design concerns intersect. In this paper, we propose an integrated approach to handle System convergence of aviation cyber physical systems based on multi-dimensions, multi-views, multi-paradigm and multiple tools. This model-integrated development approach addresses the development needs of cyber physical systems through the pervasive use of models, and physical world, cyber world can be specified and modeled together, cyber world and physical world can be converged entirely, and cyber world models and physical world model can be integrated seamlessly. The effectiveness of the approach is illustrated by means of one practical case study: specifying and modeling Aircraft Systems. In this paper, We specify and model Aviation Cyber-Physical Systems with integrating Modelica, Modelicaml and Architecture Analysis & Design Language (AADL), the physical world is modeled by Modelica and Modelicaml, the cyber part is modeled by AADL and Modelicaml.

Hummel, M..  2014.  State-of-the-Art: A Systematic Literature Review on Agile Information Systems Development. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :4712-4721.

Principles of agile information systems development (ISD) have attracted the interest of practice as well as research. The goal of this literature review is to validate, update and extend previous reviews in terms of the general state of research on agile ISD. Besides including categories such as the employed research methods and data collection techniques, the importance of theory is highlighted by evaluating the theoretical foundations and contributions of former studies. Since agile ISD is rooted in the IS as well as software engineering discipline, important outlets of both disciplines are included in the search process, resulting in 482 investigated papers. The findings show that quantitative studies and the theoretical underpinnings of agile ISD are lacking. Extreme Programming is still the most researched agile ISD method, and more efforts on Scrum are needed. In consequence, multiple research gaps that need further research attention are identified.