Visible to the public Biblio

Found 12218 results

2021-05-18
Feng, Qi, Feng, Chendong, Hong, Weijiang.  2020.  Graph Neural Network-based Vulnerability Predication. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). :800–801.
Automatic vulnerability detection is challenging. In this paper, we report our in-progress work of vulnerability prediction based on graph neural network (GNN). We propose a general GNN-based framework for predicting the vulnerabilities in program functions. We study the different instantiations of the framework in representative program graph representations, initial node encodings, and GNN learning methods. The preliminary experimental results on a representative benchmark indicate that the GNN-based method can improve the accuracy and recall rates of vulnerability prediction.
Chen, Haibo, Chen, Junzuo, Chen, Jinfu, Yin, Shang, Wu, Yiming, Xu, Jiaping.  2020.  An Automatic Vulnerability Scanner for Web Applications. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1519–1524.
With the progressive development of web applications and the urgent requirement of web security, vulnerability scanner has been particularly emphasized, which is regarded as a fundamental component for web security assurance. Various scanners are developed with the intention of that discovering the possible vulnerabilities in advance to avoid malicious attacks. However, most of them only focus on the vulnerability detection with single target, which fail in satisfying the efficiency demand of users. In this paper, an effective web vulnerability scanner that integrates the information collection with the vulnerability detection is proposed to verify whether the target web application is vulnerable or not. The experimental results show that, by guiding the detection process with the useful collected information, our tool achieves great web vulnerability detection capability with a large scanning scope.
Zeng, Jingxiang, Nie, Xiaofan, Chen, Liwei, Li, Jinfeng, Du, Gewangzi, Shi, Gang.  2020.  An Efficient Vulnerability Extrapolation Using Similarity of Graph Kernel of PDGs. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1664–1671.
Discovering the potential vulnerabilities in software plays a crucial role in ensuring the security of computer system. This paper proposes a method that can assist security auditors with the analysis of source code. When security auditors identify new vulnerabilities, our method can be adopted to make a list of recommendations that may have the same vulnerabilities for the security auditors. Our method relies on graph representation to automatically extract the mode of PDG(program dependence graph, a structure composed of control dependence and data dependence). Besides, it can be applied to the vulnerability extrapolation scenario, thus reducing the amount of audit code. We worked on an open-source vulnerability test set called Juliet. According to the evaluation results, the clustering effect produced is satisfactory, so that the feature vectors extracted by the Graph2Vec model are applied to labeling and supervised learning indicators are adopted to assess the model for its ability to extract features. On a total of 12,000 small data sets, the training score of the model can reach up to 99.2%, and the test score can reach a maximum of 85.2%. Finally, the recommendation effect of our work is verified as satisfactory.
Tai, Zeming, Washizaki, Hironori, Fukazawa, Yoshiaki, Fujimatsu, Yurie, Kanai, Jun.  2020.  Binary Similarity Analysis for Vulnerability Detection. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1121–1122.
Binary similarity has been widely used in function recognition and vulnerability detection. How to define a proper similarity is the key element in implementing a fast detection method. We proposed a scalable method to detect binary vulnerabilities based on similarity. Procedures lifted from binaries are divided into several comparable strands by data dependency, and those strands are transformed into a normalized form by our tool named VulneraBin, so that similarity can be determined between two procedures through a hash value comparison. The low computational complexity allows semantically equivalent code to be identified in binaries compiled from million lines of source code in a fast and accurate way.
Niloy, Nishat Tasnim, Islam, Md. Shariful.  2020.  IntellCache: An Intelligent Web Caching Scheme for Multimedia Contents. 2020 Joint 9th International Conference on Informatics, Electronics Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision Pattern Recognition (icIVPR). :1–6.
The traditional reactive web caching system is getting less popular day by day due to its inefficiency in handling the overwhelming requests for multimedia content. An intelligent web caching system intends to take optimal cache decisions by predicting future popular contents (FPC) proactively. In recent years, a few approaches have proposed some intelligent caching system where they were concerned about proactive caching. Those works intensified the importance of FPC prediction using the prediction models. However, only FPC prediction may not help to get the optimal solution in every scenario. In this paper, a technique named IntellCache has been proposed that increases the caching efficiency by taking a cache decision i.e. content storing decision before storing the predicted FPC. Different deep learning models such as- multilayer perceptron (MLP), Long short-term memory (LSTM) of Recurrent Neural Network (RNN) and ConvLSTM a combination of LSTM and Convolutional Neural Network (CNN) are compared to identify the most efficient model for FPC. The information on the contents of 18 years from the MovieLens data repository has been mined to evaluate the proposed approach. Results show that this proposed scheme outperforms previous solutions by achieving a higher cache hit ratio and lower average delay and thus, ensures users' satisfaction.
Hasslinger, Gerhard, Ntougias, Konstantinos, Hasslinger, Frank, Hohlfeld, Oliver.  2020.  General Knapsack Bounds of Web Caching Performance Regarding the Properties of each Cacheable Object. 2020 IFIP Networking Conference (Networking). :821–826.
Caching strategies have been evaluated and compared in many studies, most often via simulation, but also in analytic methods. Knapsack solutions provide a general analytical approach for upper bounds on web caching performance. They assume objects of maximum (value/size) ratio being selected as cache content, with flexibility to define the caching value. Therefore the popularity, cost, size, time-to-live restrictions etc. per object can be included an overall caching goal, e.g., for reducing delay and/or transport path length in content delivery. The independent request model (IRM) leads to basic knapsack bounds for static optimum cache content. We show that a 2-dimensional (2D-)knapsack solution covers arbitrary request pattern, which selects dynamically changing content yielding maximum caching value for any predefined request sequence. Moreover, Belady's optimum strategy for clairvoyant caching is identified as a special case of our 2D-knapsack solution when all objects are unique. We also summarize a comprehensive picture of the demands and efficiency criteria for web caching, including updating speed and overheads. Our evaluations confirm significant performance gaps from LRU to advanced GreedyDual and score-based web caching methods and to the knapsack bounds.
Wingerath, Wolfram, Gessert, Felix, Witt, Erik, Kuhlmann, Hannes, Bücklers, Florian, Wollmer, Benjamin, Ritter, Norbert.  2020.  Speed Kit: A Polyglot GDPR-Compliant Approach For Caching Personalized Content. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1603–1608.
Users leave when page loads take too long. This simple fact has complex implications for virtually all modern businesses, because accelerating content delivery through caching is not as simple as it used to be. As a fundamental technical challenge, the high degree of personalization in today's Web has seemingly outgrown the capabilities of traditional content delivery networks (CDNs) which have been designed for distributing static assets under fixed caching times. As an additional legal challenge for services with personalized content, an increasing number of regional data protection laws constrain the ways in which CDNs can be used in the first place. In this paper, we present Speed Kit as a radically different approach for content distribution that combines (1) a polyglot architecture for efficiently caching personalized content with (2) a natively GDPR-compliant client proxy that handles all sensitive information within the user device. We describe the system design and implementation, explain the custom cache coherence protocol to avoid data staleness and achieve Δ-atomicity, and we share field experiences from over a year of productive use in the e-commerce industry.
Intharawijitr, Krittin, Harvey, Paul, Imai, Pierre.  2020.  A Feasibility Study of Cache in Smart Edge Router for Web-Access Accelerator. 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC). :360–365.
Regardless of the setting, edge computing has drawn much attention from both the academic and industrial communities. For edge computing, content delivery networks are both a concrete and production deployable use case. While viable at the WAN or telco edge scale, it is unclear if this extends to others, such as in home WiFi routers, as has been assumed by some. In this work-in-progress, we present an initial study on the viability of using smart edge WiFi routers as a caching location. We describe the simulator we created to test this, as well as the analysis of the results obtained. We use 1 day of e-commerce web log traffic from a public data set, as well as a sampled subset of our own site - part of an ecosystem of over 111 million users. We show that in the best case scenario, smart edge routers are inappropriate for e-commerce web caching.
Wei, Hanlin, Bai, Guangdong, Luo, Zongwei.  2020.  Foggy: A New Anonymous Communication Architecture Based on Microservices. 2020 25th International Conference on Engineering of Complex Computer Systems (ICECCS). :135–144.
This paper presents Foggy, an anonymous communication system focusing on providing users with anonymous web browsing. Foggy provides a microservice-based proxy for web browsing and other low-latency network activities without exposing users' metadata and browsed content to adversaries. It is designed with decentralized information management, web caching, and configurable service selection. Although Foggy seems to be more centralized compared with Tor, it gains an advantage in manageability while retaining anonymity. Foggy can be deployed by several agencies to become more decentralized. We prototype Foggy and test its performance. Our experiments show Foggy's low latency and deployability, demonstrating its potential to be a commercial solution for real-world deployment.
2021-05-20
Yu, Jia ao, Peng, Lei.  2020.  Black-box Attacks on DNN Classifier Based on Fuzzy Adversarial Examples. 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). :965—969.
The security of deep learning becomes increasing important with the more and more related applications. The adversarial attack is the known method that makes the performance of deep learning network (DNN) decline rapidly. However, adversarial attack needs the gradient knowledge of the target networks to craft the specific adversarial examples, which is the white-box attack and hardly becomes true in reality. In this paper, we implement a black-box attack on DNN classifier via a functionally equivalent network without knowing the internal structure and parameters of the target networks. And we increase the entropy of the noise via deep convolution generative adversarial networks (DCGAN) to make it seems fuzzier, avoiding being probed and eliminated easily by adversarial training. Experiments show that this method can produce a large number of adversarial examples quickly in batch and the target network cannot improve its accuracy via adversarial training simply.
Das, Debayan, Nath, Mayukh, Ghosh, Santosh, Sen, Shreyas.  2020.  Killing EM Side-Channel Leakage at its Source. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). :1108—1111.
Side-channel analysis (SCA) is a big threat to the security of connected embedded devices. Over the last few years, physical non-invasive SCA attacks utilizing the electromagnetic (EM) radiation (EM side-channel `leakage') from a crypto IC has gained huge momentum owing to the availability of the low-cost EM probes and development of the deep-learning (DL) based profiling attacks. In this paper, our goal is to understand the source of the EM leakage by analyzing a white-box modeling of the EM leakage from the crypto IC, leading towards a low-overhead generic countermeasure. To kill this EM leakage from its source, the solution utilizes a signature attenuation hardware (SAH) encapsulating the crypto core locally within the lower metal layers such that the critical correlated crypto current signature is significantly attenuated before it passes through the higher metal layers to connect to the external pin. The protection circuit utilizing AES256 as the crypto core is fabricated in 65nm process and shows for the first time the effects of metal routing on the EM leakage. The \textbackslashtextgreater 350× signature attenuation of the SAH together with the local lower metal routing ensured that the protected AES remains secure even after 1B measurements for both EM and power SCA, which is an 100× improvement over the state-of-the-art with comparable overheads. Overall, with the combination of the 2 techniques - signature suppression and local lower metal routing, we are able to kill the EM side-channel leakage at its source such that the correlated signature is not passed through the top-level metals, MIM capacitors, or on-board inductors, which are the primary sources of EM leakage, thereby preventing EM SCA attacks.
Fichera, S., Sgambelluri, A., Giorgetti, A., Cugini, F., Paolucci, F..  2020.  Blockchain-Anchored Failure Responsibility Management in Disaggregated Optical Networks. 2020 Optical Fiber Communications Conference and Exhibition (OFC). :1—3.
A novel framework based on blockchain is proposed to provide trusted SLA accounting. Extensions to SDN ONOS controller successfully assess controversial SLA degradations responsibilities upon failure events in a multi-vendor OpenROADM-based white box scenario.
Kim, Brian, Sagduyu, Yalin E., Davaslioglu, Kemal, Erpek, Tugba, Ulukus, Sennur.  2020.  Over-the-Air Adversarial Attacks on Deep Learning Based Modulation Classifier over Wireless Channels. 2020 54th Annual Conference on Information Sciences and Systems (CISS). :1—6.
We consider a wireless communication system that consists of a transmitter, a receiver, and an adversary. The transmitter transmits signals with different modulation types, while the receiver classifies its received signals to modulation types using a deep learning-based classifier. In the meantime, the adversary makes over-the-air transmissions that are received as superimposed with the transmitter's signals to fool the classifier at the receiver into making errors. While this evasion attack has received growing interest recently, the channel effects from the adversary to the receiver have been ignored so far such that the previous attack mechanisms cannot be applied under realistic channel effects. In this paper, we present how to launch a realistic evasion attack by considering channels from the adversary to the receiver. Our results show that modulation classification is vulnerable to an adversarial attack over a wireless channel that is modeled as Rayleigh fading with path loss and shadowing. We present various adversarial attacks with respect to availability of information about channel, transmitter input, and classifier architecture. First, we present two types of adversarial attacks, namely a targeted attack (with minimum power) and non-targeted attack that aims to change the classification to a target label or to any other label other than the true label, respectively. Both are white-box attacks that are transmitter input-specific and use channel information. Then we introduce an algorithm to generate adversarial attacks using limited channel information where the adversary only knows the channel distribution. Finally, we present a black-box universal adversarial perturbation (UAP) attack where the adversary has limited knowledge about both channel and transmitter input. By accounting for different levels of information availability, we show the vulnerability of modulation classifier to over-the-air adversarial attacks.
Mukwevho, Ndivho, Chibaya, Colin.  2020.  Dynamic vs Static Encryption Tables in DES Key Schedules. 2020 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1—5.
The DES is a symmetric cryptosystem which encrypts data in blocks of 64 bits using 48 bit keys in 16 rounds. It comprises a key schedule, encryption and decryption components. The key schedule, in particular, uses three static component units, the PC-1, PC-2 and rotation tables. However, can these three static components of the key schedule be altered? The DES development team never explained most of these component units. Understanding the DES key schedule is, thus, hard. In addition, reproducing the DES model with unknown component units is challenging, making it hard to adapt and bring implementation of the DES model closer to novice developers' context. We propose an alternative approach for re-implementing the DES key schedule using, rather, dynamic instead of static tables. We investigate the design features of the DES key schedule and implement the same. We then propose a re-engineering view towards a more white-box design. Precisely, generation of the PC-1, rotation and PC-2 tables is revisited to random dynamic tables created at run time. In our views, randomly generated component units eliminate the feared concerns regarding perpetrators' possible knowledge of the internal structures of the static component units. Comparison of the performances of the hybrid DES key schedule to that of the original DES key schedule shows closely related outcomes, connoting the hybrid version as a good alternative to the original model. Memory usage and CPU time were measured. The hybrid insignificantly out-performs the original DES key schedule. This outcome may inspire further researches on possible alterations to other DES component units as well, bringing about completely white-box designs to the DES model.
Chibaya, Colin, Jowa, Viola Jubile, Rupere, Taurayi.  2020.  A HES for Low Speed Processors. 2020 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1—6.
Adaptation of e-commerce in third world countries requires more secure computing facilities. Online data is vulnerable and susceptible to active attacks. Hundreds of security mechanisms and services have been proposed to curb this challenge. However, available security mechanisms, sufficiently strong, are heavy for the machines used. To secure online data where machines' processing power and memory are deficient, a Hybrid Encryption Standard (HES) is proposed. The HES is built on the Data Encryption Standard (DES) algorithm and its siblings. The component units of the DES are redesigned towards reduced demands for processing power and memory. Precisely, white box designs of IP tables, PC tables, Expansion tables, Rotation tables, S-boxes and P-boxes are proposed, all aimed at reducing the processing time and memory demands. Evaluation of the performance of the HES algorithm against the performance of the traditional DES algorithm reveal that the HES out-performs the DES with regards to speed, memory demands, and general acceptance by novice practitioners in the cryptography field. In addition, reproducibility and flexibility are attractive features of the HES over the DES.
Maung, Maung, Pyone, April, Kiya, Hitoshi.  2020.  Encryption Inspired Adversarial Defense For Visual Classification. 2020 IEEE International Conference on Image Processing (ICIP). :1681—1685.
Conventional adversarial defenses reduce classification accuracy whether or not a model is under attacks. Moreover, most of image processing based defenses are defeated due to the problem of obfuscated gradients. In this paper, we propose a new adversarial defense which is a defensive transform for both training and test images inspired by perceptual image encryption methods. The proposed method utilizes a block-wise pixel shuffling method with a secret key. The experiments are carried out on both adaptive and non-adaptive maximum-norm bounded white-box attacks while considering obfuscated gradients. The results show that the proposed defense achieves high accuracy (91.55%) on clean images and (89.66%) on adversarial examples with noise distance of 8/255 on CFAR-10 dataset. Thus, the proposed defense outperforms state-of-the-art adversarial defenses including latent adversarial training, adversarial training and thermometer encoding.
Kamalraj, R., Madhan, E.S., Ghamya, K., Bhargavi, V..  2020.  Enhance Safety and Security System for Children in School Campus by using Wearable Sensors. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :986—990.
Child security in the school campus is most important in building a good society. In and around the world the children are abused and killed also in sometimes by the people those who are not in good attitude in the school campus. To track and resolve such issues an enhanced security feature system is required. Hence in this paper an enhanced version of security system for children is proposed by using `Wearable Sensors'. In this proposed method two wearable sensors nodes such as `Staff Node' and `Student Node' are paired by using `Bluetooth' communication technology and Smart Watch technology is also used to communicate the Security Center or Processing Node for tracking them about their location and whether the two nodes are moved away from the classroom. If the child node is not moving for a long period then it may be notified by the center and they will inform the security officers near to the place. This proposed method may satisfy the need of school management about the staff movements with students and the behavior of students to avoid unexpected issues.
Sunehra, Dhiraj, Sreshta, V. Sai, Shashank, V., Kumar Goud, B. Uday.  2020.  Raspberry Pi Based Smart Wearable Device for Women Safety using GPS and GSM Technology. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.
Security has become a major concern for women, children and even elders in every walk of their life. Women are getting assaulted and molested, children are getting kidnapped, elder citizens are also facing many problems like robbery, etc. In this paper, a smart security solution called smart wearable device system is implemented using the Raspberry Pi3 for enhancing the safety and security of women/children. It works as an alert as well as a security system. It provides a buzzer alert alert to the people who are nearby to the user (wearing the smart device). The system uses Global Positioning System (GPS) to locate the user, sends the location of the user through SMS to the emergency contact and police using the Global System for Mobile Communications (GSM) / General Radio Packet Service (GPRS) technology. The device also captures the image of the assault and surroundings of the user or victim using USB Web Camera interfaced to the device and sends it as an E-mail alert to the emergency contact soon after the user presses the panic button present on Smart wearable device system.
Almogbil, Atheer, Alghofaili, Abdullah, Deane, Chelsea, Leschke, Timothy, Almogbil, Atheer, Alghofaili, Abdullah.  2020.  Digital Forensic Analysis of Fitbit Wearable Technology: An Investigator’s Guide. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :44—49.
Wearable technology, such as Fitbit devices, log a user's daily activities, heart rate, calories burned, step count, and sleep activity. This information is valuable to digital forensic investigators as it may serve as evidence to a crime, to either support a suspect's innocence or guilt. It is important for an investigator to find and analyze every piece of data for accuracy and integrity; however, there is no standard for conducting a forensic investigation for wearable technology. In this paper, we conduct a forensic analysis of two different Fitbit devices using open-source tools. It is the responsibility of the investigator to show how the data was obtained and to ensure that the data was not modified during the analysis. This paper will guide investigators in understanding what data is collected by a Fitbit device (specifically the Ionic smartwatch and Alta tracker), how to handle Fitbit devices, and how to extract and forensically analyze said devices using open-source tools, Autopsy Sleuth Kit and Bulk Extractor Viewer.
Mheisn, Alaa, Shurman, Mohammad, Al-Ma’aytah, Abdallah.  2020.  WSNB: Wearable Sensors with Neural Networks Located in a Base Station for IoT Environment. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.
The Internet of Things (IoT) is a system paradigm that recently introduced, which includes different smart devices and applications, especially, in smart cities, e.g.; manufacturing, homes, and offices. To improve their awareness capabilities, it is attractive to add more sensors to their framework. In this paper, we propose adding a new sensor as a wearable sensor connected wirelessly with a neural network located on the base station (WSNB). WSNB enables the added sensor to refine their labels through active learning. The new sensors achieve an average accuracy of 93.81%, which is 4.5% higher than the existing method, removing human support and increasing the life cycle for the sensors by using neural network approach in the base station.
Narwal, Bhawna, Ojha, Arushi, Goel, Nimisha, Dhawan, Sudipti.  2020.  A Yoking-Proof Based Remote Authentication Scheme for Cloud-Aided Wearable Devices (YPACW). 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.

The developments made in IoT applications have made wearable devices a popular choice for collecting user data to monitor this information and provide intelligent service support. Since wearable devices are continuously collecting and transporting a user's sensitive data over the network, there exist increased security challenges. Moreover, wearable devices lack the computation capabilities in comparison to traditional short-range communication devices. In this paper, authors propounded a Yoking Proof based remote Authentication scheme for Cloud-aided Wearable devices (YPACW) which takes PUF and cryptographic functions and joins them to achieve mutual authentication between the wearable devices and smartphone via a cloud server, by performing the simultaneous verification of these devices, using the established yoking-proofs. Relative to Liu et al.'s scheme, YPACW provides better results with the reduction of communication and processing cost significantly.

Mehndiratta, Nishtha.  2020.  A Yoking-Proof and PUF-based Mutual Authentication Scheme for Cloud-aided Wearable Devices. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—4.

In today's world privacy is paramount in everyone's life. Alongside the growth of IoT (Internet of things), wearable devices are becoming widely popular for real-time user monitoring and wise service support. However, in contrast with the traditional short-range communications, these resource-scanty devices face various vulnerabilities and security threats during the course of interactions. Hence, designing a security solution for these devices while dealing with the limited communication and computation capabilities is a challenging task. In this work, PUF (Physical Unclonable Function) and lightweight cryptographic parameters are used together for performing two-way authentication between wearable devices and smartphone, while the simultaneous verification is performed by providing yoking-proofs to the Cloud Server. At the end, it is shown that the proposed scheme satisfies many security aspects and is flexible as well as lightweight.

Heydari, Vahid.  2020.  A New Security Framework for Remote Patient Monitoring Devices. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—4.

Digital connectivity is fundamental to the health care system to deliver safe and effective care. However, insecure connectivity could be a major threat to patient safety and privacy (e.g., in August 2017, FDA recalled 465,000 pacemakers because of discovering security flaws). Although connecting a patient's pacemaker to the Internet has many advantages for monitoring the patient, this connectivity opens a new door for cyber-attackers to steal the patient data or even control the pacemaker or damage it. Therefore, patients are forced to choose between connectivity and security. This paper presents a framework for secure and private communications between wearable medical devices and patient monitoring systems. The primary objective of this research is twofold, first to identify and analyze the communication vulnerabilities, second, to develop a framework for combating unauthorized access to data through the compromising of computer security. Specifically, hiding targets from cyber-attackers could prevent our system from future cyber-attacks. This is the most effective way to stop cyber-attacks in their first step.

Kumar, Devendra, Mathur, Dhirendra.  2020.  Proximity Coupled Wideband Wearable Antenna for Body Area Networks. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—5.

This paper presents a proximity coupled wideband wearable antenna operating between 4.71 GHz and 5.81 GHz with 5.2 GHz as centre frequency for biomedical telemetry applications in ISM band (IEEE 802.11 Standard). Two layers of different flexible substrate materials, ethylene-vinyl acetate and felt make the design mechanically stable. Bandwidth improvement is achieved by introducing two slots on elliptical ground plane. Highest gain of 3.72 dB and front to back ratio (FBR) of 6.55 is obtained in the given frequency band. The dimensions of antenna have been optimized to have desired bandwidth of 1100 MHz (\$\textbackslashtextbackslashsimeq\$21%). The specific absorption rate (SAR) value is 1.12 \$W/Kg\$ for 1 g of human body tissue. Both simulated and measured results are presented for the structure.

Almogbil, Atheer, Alghofaili, Abdullah, Deane, Chelsea, Leschke, Timothy, Almogbil, Atheer, Alghofaili, Abdullah.  2020.  The Accuracy of GPS-Enabled Fitbit Activities as Evidence: A Digital Forensics Study. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :186—189.

Technology is advancing rapidly and with this advancement, it has become apparent that it is nearly impossible to not leave a digital trace when committing a crime. As evidenced by multiple cases handled by law enforcement, Fitbit data has proved to be useful when determining the validity of alibis and in piecing together the timeline of a crime scene. In our paper, experiments testing the accuracy and reliability of GPS-tracked activities logged by the Fitbit Alta tracker and Ionic smartwatch are conducted. Potential indicators of manipulated or altered GPS-tracked activities are identified to help guide digital forensic investigators when handling such Fitbit data as evidence.