Visible to the public Biblio

Found 12055 results

Conference Paper
Chalise, Batu K..  2019.  ADMM-based Beamforming Optimization for Physical Layer Security in a Full-duplex Relay System. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :4734–4738.
Although beamforming optimization problems in full-duplex communication systems can be optimally solved with the semidefinite relaxation (SDR) approach, its computational complexity increases rapidly when the problem size increases. In order to circumvent this issue, in this paper, we propose an alternating direction of multiplier method (ADMM) which minimizes the augmented Lagrangian of the dual of the SDR and handles the inequality constraints with the use of slack variables. The proposed ADMM is then applied for optimizing the relay beamformer to maximize the secrecy rate. Simulation results show that the proposed ADMM performs as good as the SDR approach.
Zhao, Pu, Liu, Sijia, Wang, Yanzhi, Lin, Xue.  2018.  An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks. Proceedings of the 26th ACM International Conference on Multimedia. :1065-1073.

Deep neural networks (DNNs) are known vulnerable to adversarial attacks. That is, adversarial examples, obtained by adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels. In a successful adversarial attack, the targeted mis-classification should be achieved with the minimal distortion added. In the literature, the added distortions are usually measured by \$L\_0\$, \$L\_1\$, \$L\_2\$, and \$L\_$\backslash$infty \$ norms, namely, L\_0, L\_1, L\_2, and L\_$ınfty$ attacks, respectively. However, there lacks a versatile framework for all types of adversarial attacks. This work for the first time unifies the methods of generating adversarial examples by leveraging ADMM (Alternating Direction Method of Multipliers), an operator splitting optimization approach, such that \$L\_0\$, \$L\_1\$, \$L\_2\$, and \$L\_$\backslash$infty \$ attacks can be effectively implemented by this general framework with little modifications. Comparing with the state-of-the-art attacks in each category, our ADMM-based attacks are so far the strongest, achieving both the 100% attack success rate and the minimal distortion.

Azevedo, Ernani, Machado, Marcos, Melo, Rodrigo, Aschoff, Rafael, Sadok, Djamel, Carmo, Ubiratan do.  2016.  Adopting Security Routines in Legacy Organizations. Proceedings of the 2016 Workshop on Fostering Latin-American Research in Data Communication Networks. :55–57.

Security is a well-known critical issue and exploitation of vulnerabilities is increasing in number, sophistication and damage. Furthermore, legacy systems tend to offer difficulty when upgrades are needed, specially when security recommendations are proposed. This paper presents a strategy for legacy systems based on three disciplines which guide the adoption of secure routines while avoid production drop. We present a prototype framework and discuss its success in providing security to the network of a power plant.

Weichselbaum, L., Spagnuolo, M., Janc, A..  2016.  Adopting Strict Content Security Policy for XSS Protection. 2016 IEEE Cybersecurity Development (SecDev). :149–149.

Content Security Policy is a mechanism designed to prevent the exploitation of XSS – the most common high-risk web application flaw. CSP restricts which scripts can be executed by allowing developers to define valid script sources; an attacker with a content-injection flaw should not be able to force the browser to execute arbitrary malicious scripts. Currently, CSP is commonly used in conjunction with domain-based script whitelist, where the existence of a single unsafe endpoint in the script whitelist effectively removes the value of the policy as a protection against XSS ( some examples ).

Abdullah, Ghazi Muhammad, Mehmood, Quzal, Khan, Chaudry Bilal Ahmad.  2018.  Adoption of Lamport signature scheme to implement digital signatures in IoT. 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1–4.
The adoption of Internet of Things (IoT) technology is increasing at a fast rate. With improving software technologies and growing security threats, there is always a need to upgrade the firmware in the IoT devices. Digital signatures are an integral part of digital communication to cope with the threat of these devices being exploited by attackers to run malicious commands, codes or patches on them. Digital Signatures measure the authenticity of the transmitted data as well as are a source of record keeping (repudiation). This study proposes the adoption of Lamport signature scheme, which is quantum resistant, for authentication of data transmission and its feasibility in IoT devices.
Abedin, Zain Ul, Guan, Zhitao, Arif, Asad Ullah, Anwar, Usman.  2019.  An Advance Cryptographic Solutions in Cloud Computing Security. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1–6.

Cryptographically cloud computing may be an innovative safe cloud computing design. Cloud computing may be a huge size dispersed computing model that ambitious by the economy of the level. It integrates a group of inattentive virtualized animatedly scalable and managed possessions like computing control storage space platform and services. External end users will approach to resources over the net victimization fatal particularly mobile terminals, Cloud's architecture structures are advances in on-demand new trends. That are the belongings are animatedly assigned to a user per his request and hand over when the task is finished. So, this paper projected biometric coding to boost the confidentiality in Cloud computing for biometric knowledge. Also, this paper mentioned virtualization for Cloud computing also as statistics coding. Indeed, this paper overviewed the safety weaknesses of Cloud computing and the way biometric coding will improve the confidentiality in Cloud computing atmosphere. Excluding this confidentiality is increased in Cloud computing by victimization biometric coding for biometric knowledge. The novel approach of biometric coding is to reinforce the biometric knowledge confidentiality in Cloud computing. Implementation of identification mechanism can take the security of information and access management in the cloud to a higher level. This section discusses, however, a projected statistics system with relation to alternative recognition systems to date is a lot of advantageous and result oriented as a result of it does not work on presumptions: it's distinctive and provides quick and contact less authentication. Thus, this paper reviews the new discipline techniques accustomed to defend methodology encrypted info in passing remote cloud storage.

Bhatnagar, Dev, Som, Subhranil, Khatri, Sunil Kumar.  2019.  Advance Persistant Threat and Cyber Spying - The Big Picture, Its Tools, Attack Vectors and Countermeasures. 2019 Amity International Conference on Artificial Intelligence (AICAI). :828–839.

Advance persistent threat is a primary security concerns to the big organizations and its technical infrastructure, from cyber criminals seeking personal and financial information to state sponsored attacks designed to disrupt, compromising infrastructure, sidestepping security efforts thus causing serious damage to organizations. A skilled cybercriminal using multiple attack vectors and entry points navigates around the defenses, evading IDS/Firewall detection and breaching the network in no time. To understand the big picture, this paper analyses an approach to advanced persistent threat by doing the same things the bad guys do on a network setup. We will walk through various steps from foot-printing and reconnaissance, scanning networks, gaining access, maintaining access to finally clearing tracks, as in a real world attack. We will walk through different attack tools and exploits used in each phase and comparative study on their effectiveness, along with explaining their attack vectors and its countermeasures. We will conclude the paper by explaining the factors which actually qualify to be an Advance Persistent Threat.

Thakar, Bhavik, Parekh, Chandresh.  2016.  Advance Persistent Threat: Botnet. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :143:1–143:6.

Growth of internet era and corporate sector dealings communication online has introduced crucial security challenges in cyber space. Statistics of recent large scale attacks defined new class of threat to online world, advanced persistent threat (APT) able to impact national security and economic stability of any country. From all APTs, botnet is one of the well-articulated and stealthy attacks to perform cybercrime. Botnet owners and their criminal organizations are continuously developing innovative ways to infect new targets into their networks and exploit them. The concept of botnet refers collection of compromised computers (bots) infected by automated software robots, that interact to accomplish some distributed task which run without human intervention for illegal purposes. They are mostly malicious in nature and allow cyber criminals to control the infected machines remotely without the victim's knowledge. They use various techniques, communication protocols and topologies in different stages of their lifecycle; also specifically they can upgrade their methods at any time. Botnet is global in nature and their target is to steal or destroy valuable information from organizations as well as individuals. In this paper we present real world botnet (APTs) survey.

Tanana, D., Tanana, G..  2020.  Advanced Behavior-Based Technique for Cryptojacking Malware Detection. 2020 14th International Conference on Signal Processing and Communication Systems (ICSPCS). :1—4.
With rising value and popularity of cryptocurrencies, they inevitably attract cybercriminals seeking illicit profits within blockchain ecosystem. Two of the most popular methods are ransomware and cryptojacking. Ransomware, being the first and more obvious threat has been extensively studied in the past. Unlike that, scientists have often neglected cryptojacking, because it’s less obvious and less harmful than ransomware. In this paper, we’d like to propose enhanced detection program to combat cryptojacking, additionally briefly touching history of cryptojacking, also known as malicious mining and reviewing most notable previous attempts to detect and combat cryptojacking. The review would include out previous work on malicious mining detection and our current detection program is based on its previous iteration, which mostly used CPU usage heuristics to detect cryptojacking. However, we will include additional metrics for malicious mining detection, such as network usage and calls to cryptographic libraries, which result in a 93% detection rate against the selected number of cryptojacking samples, compared to 81% rate achieved in previous work. Finally, we’ll discuss generalization of proposed detection technique to include GPU cryptojackers.
Mathew, S., Saranya, G..  2017.  Advanced biometric home security system using digital signature and DNA cryptography. 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT). :1–4.

In today's growing concern for home security, we have developed an advanced security system using integrated digital signature and DNA cryptography. The digital signature is formed using multi-feature biometric traits which includes both fingerprint as well as iris image. We further increase the security by using DNA cryptography which is embedded on a smart card. In order to prevent unauthorized access manually or digitally, we use geo-detection which compares the unregistered devices location with the user's location using any of their personal devices such as smart phone or tab.

M. B. Amin, W. Zirwas, M. Haardt.  2015.  "Advanced channel prediction concepts for 5G radio systems". 2015 International Symposium on Wireless Communication Systems (ISWCS). :166-170.

Massive MIMO and tight cooperation between transmission nodes are expected to become an integral part of a future 5G radio system. As part of an overall interference mitigation scheme substantial gains in coverage, spectral as well as energy efficiency have been reported. One of the main limitations for massive MIMO and coordinated multi-point (CoMP) systems is the aging of the channel state information at the transmitter (CSIT), which can be overcome partly by state of the art channel prediction techniques. For a clean slate 5G radio system, we propose to integrate channel prediction from the scratch in a flexible manner to benefit from future improvements in this area. As any prediction is unreliable by nature, further improvements over the state of the art are needed for a convincing solution. In this paper, we explain how the basic ingredients of 5G like base stations with massive MIMO antenna arrays, and multiple UE antennas can help to stretch today's limits with an approximately 10 dB lower normalized mean square error (NMSE) of the predicted channel. In combination with the novel introduced concept of artificially mutually coupled antennas, adding super-directivity gains to virtual beamforming, robust and accurate prediction over 10 ms with an NMSE of -20 dB up to 15 km/h at 2.6 GHz RF frequency could be achieved. This result has been achieved for measured channels without massive MIMO, but a comparison with ray-traced channels for the same scenario is provided as well.

Signorello, S., Marchal, S., François, J., Festor, O., State, R..  2017.  Advanced interest flooding attacks in named-data networking. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–10.

The Named-Data Networking (NDN) has emerged as a clean-slate Internet proposal on the wave of Information-Centric Networking. Although the NDN's data-plane seems to offer many advantages, e.g., native support for multicast communications and flow balance, it also makes the network infrastructure vulnerable to a specific DDoS attack, the Interest Flooding Attack (IFA). In IFAs, a botnet issuing unsatisfiable content requests can be set up effortlessly to exhaust routers' resources and cause a severe performance drop to legitimate users. So far several countermeasures have addressed this security threat, however, their efficacy was proved by means of simplistic assumptions on the attack model. Therefore, we propose a more complete attack model and design an advanced IFA. We show the efficiency of our novel attack scheme by extensively assessing some of the state-of-the-art countermeasures. Further, we release the software to perform this attack as open source tool to help design future more robust defense mechanisms.

Alghamdi, W., Schukat, M..  2017.  Advanced Methodologies to Deter Internal Attacks in PTP Time Synchronization Networks. 2017 28th Irish Signals and Systems Conference (ISSC). :1–6.

High accurate time synchronization is very important for many applications and industrial environments. In a computer network, synchronization of time for connected devices is provided by the Precision Time Protocol (PTP), which in principal allows for device time synchronization down to microsecond level. However, PTP and network infrastructures are vulnerable to cyber-attacks, which can de-synchronize an entire network, leading to potentially devastating consequences. This paper will focus on the issue of internal attacks on time synchronization networks and discuss how counter-measures based on public key infrastructures, trusted platform modules, network intrusion detection systems and time synchronization supervisors can be adopted to defeat or at least detect such internal attacks.

Messaoud, B. I. D., Guennoun, K., Wahbi, M., Sadik, M..  2016.  Advanced Persistent Threat: New analysis driven by life cycle phases and their challenges. 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS). :1–6.

In a world where highly skilled actors involved in cyber-attacks are constantly increasing and where the associated underground market continues to expand, organizations should adapt their defence strategy and improve consequently their security incident management. In this paper, we give an overview of Advanced Persistent Threats (APT) attacks life cycle as defined by security experts. We introduce our own compiled life cycle model guided by attackers objectives instead of their actions. Challenges and opportunities related to the specific camouflage actions performed at the end of each APT phase of the model are highlighted. We also give an overview of new APT protection technologies and discuss their effectiveness at each one of life cycle phases.

J. Vukalović, D. Delija.  2015.  "Advanced Persistent Threats - detection and defense". 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1324-1330.

The term “Advanced Persistent Threat” refers to a well-organized, malicious group of people who launch stealthy attacks against computer systems of specific targets, such as governments, companies or military. The attacks themselves are long-lasting, difficult to expose and often use very advanced hacking techniques. Since they are advanced in nature, prolonged and persistent, the organizations behind them have to possess a high level of knowledge, advanced tools and competent personnel to execute them. The attacks are usually preformed in several phases - reconnaissance, preparation, execution, gaining access, information gathering and connection maintenance. In each of the phases attacks can be detected with different probabilities. There are several ways to increase the level of security of an organization in order to counter these incidents. First and foremost, it is necessary to educate users and system administrators on different attack vectors and provide them with knowledge and protection so that the attacks are unsuccessful. Second, implement strict security policies. That includes access control and restrictions (to information or network), protecting information by encrypting it and installing latest security upgrades. Finally, it is possible to use software IDS tools to detect such anomalies (e.g. Snort, OSSEC, Sguil).

Aidan, J. S., Zeenia, Garg, U..  2018.  Advanced Petya Ransomware and Mitigation Strategies. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). :23–28.

In this cyber era, the cyber threats have reached a new level of menace and maturity. One of the major threat in this cyber world nowadays is ransomware attack which had affected millions of computers. Ransomware locks the valuable data with often unbreakable encryption codes making it inaccessible for both organization and consumers, thus demanding heavy ransom to decrypt the data. In this paper, advanced and improved version of the Petya ransomware has been introduced which has a reduced anti-virus detection of 33% which actually was 71% with the original version. System behavior is also monitored during the attack and analysis of this behavior is performed and described. Along with the behavioral analysis two mitigation strategies have also been proposed to defend the systems from the ransomware attack. This multi-layered approach for the security of the system will minimize the rate of infection as cybercriminals continue to refine their tactics, making it difficult for the organization's complacent development.

Douzi, Samira, Amar, Meryem, El Ouahidi, Bouabid.  2017.  Advanced Phishing Filter Using Autoencoder and Denoising Autoencoder. Proceedings of the International Conference on Big Data and Internet of Thing. :125–129.

Phishing is referred as an attempt to obtain sensitive information, such as usernames, passwords, and credit card details (and, indirectly, money), for malicious reasons, by disguising as a trustworthy entity in an electronic communication [1]. Hackers and malicious users, often use Emails as phishing tools to obtain the personal data of legitimate users, by sending Emails with authentic identities, legitimate content, but also with malicious URL, which help them to steal consumer's data. The high dimensional data in phishing context contains large number of redundant features that significantly elevate the classification error. Additionally, the time required to perform classification increases with the number of features. So extracting complex Features from phishing Emails requires us to determine which Features are relevant and fundamental in phishing detection. The dominant approaches in phishing are based on machine learning techniques; these rely on manual feature engineering, which is time consuming. On the other hand, deep learning is a promising alternative to traditional methods. The main idea of deep learning techniques is to learn complex features extracted from data with minimum external contribution [2]. In this paper, we propose new phishing detection and prevention approach, based first on our previous spam filter [3] to classify textual content of Email. Secondly it's based on Autoencoder and on Denoising Autoencoder (DAE), to extract relevant and robust features set of URL (to which the website is actually directed), therefore the features space could be reduced considerably, and thus decreasing the phishing detection time.

Mali, Y. K., Mohanpurkar, A..  2015.  Advanced pin entry method by resisting shoulder surfing attacks. 2015 International Conference on Information Processing (ICIP). :37–42.

The individual distinguishing proof number or (PIN) and Passwords are the remarkable well known verification strategy used in different gadgets, for example, Atms, cell phones, and electronic gateway locks. Unfortunately, the traditional PIN-entrance technique is helpless vulnerable against shoulder-surfing attacks. However, the security examinations used to support these proposed system are not focused around only quantitative investigation, but instead on the results of experiments and testing performed on proposed system. We propose a new theoretical and experimental technique for quantitative security investigation of PIN-entry method. In this paper we first introduce new security idea know as Grid Based Authentication System and rules for secure PIN-entry method by examining the current routines under the new structure. Thus by consider the existing systems guidelines; we try to develop a new PIN-entry method that definitely avoids human shoulder-surfing attacks by significantly increasing the amount of calculations complexity that required for an attacker to penetrate through the secure system.

Barthe, Gilles, Fong, Noémie, Gaboardi, Marco, Grégoire, Benjamin, Hsu, Justin, Strub, Pierre-Yves.  2016.  Advanced Probabilistic Couplings for Differential Privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :55–67.

Differential privacy is a promising formal approach to data privacy, which provides a quantitative bound on the privacy cost of an algorithm that operates on sensitive information. Several tools have been developed for the formal verification of differentially private algorithms, including program logics and type systems. However, these tools do not capture fundamental techniques that have emerged in recent years, and cannot be used for reasoning about cutting-edge differentially private algorithms. Existing techniques fail to handle three broad classes of algorithms: 1) algorithms where privacy depends on accuracy guarantees, 2) algorithms that are analyzed with the advanced composition theorem, which shows slower growth in the privacy cost, 3) algorithms that interactively accept adaptive inputs. We address these limitations with a new formalism extending apRHL, a relational program logic that has been used for proving differential privacy of non-interactive algorithms, and incorporating aHL, a (non-relational) program logic for accuracy properties. We illustrate our approach through a single running example, which exemplifies the three classes of algorithms and explores new variants of the Sparse Vector technique, a well-studied algorithm from the privacy literature. We implement our logic in EasyCrypt, and formally verify privacy. We also introduce a novel coupling technique called optimal subset coupling that may be of independent interest.

Kodera, Y., Kuribayashi, M., Kusaka, T., Nogami, Y..  2018.  Advanced Searchable Encryption: Keyword Search for Matrix-Type Storage. 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW). :292-297.
The recent development of IoT technologies and cloud storages, many types of information including private information have been gradually outsourced. For such a situation, new convenient functionalities such as arithmetic and keyword search on ciphertexts are required to allow users to retrieve information without leaking any information. Especially, searchable encryptions have been paid much attention to realize a keyword search on an encrypted domain. In addition, an architecture of searchable symmetric encryption (SSE) is a suitable and efficient solution for data outsourcing. In this paper, we focus on an SSE scheme which employs a secure index for searching a keyword with optimal search time. In the conventional studies, it has been widely considered that the scheme searches whether a queried keyword is contained in encrypted documents. On the other hand, we additionally take into account the location of a queried keyword in documents by targeting a matrix-type data format. It enables a manager to search personal information listed per line or column in CSV-like format data.
Kwiatkowska, M..  2016.  Advances and challenges of quantitative verification and synthesis for cyber-physical systems. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–5.

We are witnessing a huge growth of cyber-physical systems, which are autonomous, mobile, endowed with sensing, controlled by software, and often wirelessly connected and Internet-enabled. They include factory automation systems, robotic assistants, self-driving cars, and wearable and implantable devices. Since they are increasingly often used in safety- or business-critical contexts, to mention invasive treatment or biometric authentication, there is an urgent need for modelling and verification technologies to support the design process, and hence improve the reliability and reduce production costs. This paper gives an overview of quantitative verification and synthesis techniques developed for cyber-physical systems, summarising recent achievements and future challenges in this important field.

Brasser, Ferdinand, Davi, Lucas, Dhavlle, Abhijitt, Frassetto, Tommaso, Dinakarrao, Sai Manoj Pudukotai, Rafatirad, Setareh, Sadeghi, Ahmad-Reza, Sasan, Avesta, Sayadi, Hossein, Zeitouni, Shaza et al..  2018.  Advances and Throwbacks in Hardware-assisted Security: Special Session. Proceedings of the International Conference on Compilers, Architecture and Synthesis for Embedded Systems. :15:1–15:10.
Hardware security architectures and primitives are becoming increasingly important in practice providing trust anchors and trusted execution environment to protect modern software systems. Over the past two decades we have witnessed various hardware security solutions and trends from Trusted Platform Modules (TPM), performance counters for security, ARM's TrustZone, and Physically Unclonable Functions (PUFs), to very recent advances such as Intel's Software Guard Extension (SGX). Unfortunately, these solutions are rarely used by third party developers, make strong trust assumptions (including in manufacturers), are too expensive for small constrained devices, do not easily scale, or suffer from information leakage. Academic research has proposed a variety of solutions, in hardware security architectures, these advancements are rarely deployed in practice.
Filipek, Jozef, Hudec, Ladislav.  2016.  Advances In Distributed Security For Mobile Ad Hoc Networks. Proceedings of the 17th International Conference on Computer Systems and Technologies 2016. :89–96.

Security in Mobile Ad Hoc networks is still ongoing research in the scientific community and it is difficult bring an overall security solution. In this paper we assess feasibility of distributed firewall solutions in the Mobile Ad Hoc Networks. Attention is also focused on different security solutions in the Ad Hoc networks. We propose a security architecture which secures network on the several layers and is the most secured solution out of analyzed materials. For this purpose we use distributed public key infrastructure, distributed firewall and intrusion detection system. Our architecture is using both symmetric and asymmetric cryptography and in this paper we present performance measurements and the security analysis of our solution.

Liu, J.N.K., Yanxing Hu, You, J.J., Yulin He.  2014.  An advancing investigation on reduct and consistency for decision tables in Variable Precision Rough Set models. Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on. :1496-1503.

Variable Precision Rough Set (VPRS) model is one of the most important extensions of the Classical Rough Set (RS) theory. It employs a majority inclusion relation mechanism in order to make the Classical RS model become more fault tolerant, and therefore the generalization of the model is improved. This paper can be viewed as an extension of previous investigations on attribution reduction problem in VPRS model. In our investigation, we illustrated with examples that the previously proposed reduct definitions may spoil the hidden classification ability of a knowledge system by ignoring certian essential attributes in some circumstances. Consequently, by proposing a new β-consistent notion, we analyze the relationship between the structures of Decision Table (DT) and different definitions of reduct in VPRS model. Then we give a new notion of β-complement reduct that can avoid the defects of reduct notions defined in previous literatures. We also supply the method to obtain the β- complement reduct using a decision table splitting algorithm, and finally demonstrate the feasibility of our approach with sample instances.
 

Kulyk, O., Reinheimer, B. M., Gerber, P., Volk, F., Volkamer, M., Mühlhäuser, M..  2017.  Advancing Trust Visualisations for Wider Applicability and User Acceptance. 2017 IEEE Trustcom/BigDataSE/ICESS. :562–569.
There are only a few visualisations targeting the communication of trust statements. Even though there are some advanced and scientifically founded visualisations-like, for example, the opinion triangle, the human trust interface, and T-Viz-the stars interface known from e-commerce platforms is by far the most common one. In this paper, we propose two trust visualisations based on T-Viz, which was recently proposed and successfully evaluated in large user studies. Despite being the most promising proposal, its design is not primarily based on findings from human-computer interaction or cognitive psychology. Our visualisations aim to integrate such findings and to potentially improve decision making in terms of correctness and efficiency. A large user study reveals that our proposed visualisations outperform T-Viz in these factors.