Visible to the public Biblio

Found 9603 results

1953
Pulvari, Charles F..  1953.  The Snapping Dipoles of Ferroelectrics As a Memory Element for Digital Computers. Proceedings of the February 4-6, 1953, Western Computer Conference. :140–159.

A brief review is given of the memory properties of non-linear ferroelectric materials in terms of the direction of polarization. A sensitive pulse method has been developed for obtaining static remanent polarization data of ferroelectric materials. This method has been applied to study the effect of pulse duration and amplitude and decay of polarization on ferroelectric ceramic materials with fairly high crystalline orientation. These studies indicate that ferroelectric memory devices can be operated in the megacycle ranges. Attempts have been made to develop electrostatically induced memory devices using ferroelectric substances as a medium for storing information. As an illustration, a ferroelectric memory using a new type of switching matrix is presented having a selection ratio 50 or more.

1974
Lampson, Butler W..  1974.  Protection. SIGOPS Oper. Syst. Rev.. 8:18–24.

Abstract models are given which reflect the properties of most existing mechanisms for enforcing protection or access control, together with some possible implementations. The properties of existing systems are explicated in terms of the model and implementations.

This article was identified by the SoS Best Scientific Cybersecurity Paper Competition Distinguished Experts as a Science of Security Significant Paper. The Science of Security Paper Competition was developed to recognize and honor recently published papers that advance the science of cybersecurity. During the development of the competition, members of the Distinguished Experts group suggested that listing papers that made outstanding contributions, empirical or theoretical, to the science of cybersecurity in earlier years would also benefit the research community.

1976
Denning, Dorothy E..  1976.  A Lattice Model of Secure Information Flow. Commun. ACM. 19:236–243.
This paper investigates mechanisms that guarantee secure information flow in a computer system. These mechanisms are examined within a mathematical framework suitable for formulating the requirements of secure information flow among security classes. The central component of the model is a lattice structure derived from the security classes and justified by the semantics of information flow. The lattice properties permit concise formulations of the security requirements of different existing systems and facilitate the construction of mechanisms that enforce security. The model provides a unifying view of all systems that restrict information flow, enables a classification of them according to security objectives, and suggests some new approaches. It also leads to the construction of automatic program certification mechanisms for verifying the secure flow of information through a program.
Denning, Dorothy E..  1976.  A Lattice Model of Secure Information Flow. Commun. ACM. 19:236–243.

This paper investigates mechanisms that guarantee secure information flow in a computer system. These mechanisms are examined within a mathematical framework suitable for formulating the requirements of secure information flow among security classes. The central component of the model is a lattice structure derived from the security classes and justified by the semantics of information flow. The lattice properties permit concise formulations of the security requirements of different existing systems and facilitate the construction of mechanisms that enforce security. The model provides a unifying view of all systems that restrict information flow, enables a classification of them according to security objectives, and suggests some new approaches. It also leads to the construction of automatic program certification mechanisms for verifying the secure flow of information through a program.

This article was identified by the SoS Best Scientific Cybersecurity Paper Competition Distinguished Experts as a Science of Security Significant Paper.

The Science of Security Paper Competition was developed to recognize and honor recently published papers that advance the science of cybersecurity. During the development of the competition, members of the Distinguished Experts group suggested that listing papers that made outstanding contributions, empirical or theoretical, to the science of cybersecurity in earlier years would also benefit the research community.

Harrison, Michael A., Ruzzo, Walter L., Ullman, Jeffrey D..  1976.  Protection in Operating Systems. Commun. ACM. 19:461–471.

A model of protection mechanisms in computing systems is presented and its appropriateness is argued. The “safety” problem for protection systems under this model is to determine in a given situation whether a subject can acquire a particular right to an object. In restricted cases, it can be shown that this problem is decidable, i.e. there is an algorithm to determine whether a system in a particular configuration is safe. In general, and under surprisingly weak assumptions, it cannot be decided if a situation is safe. Various implications of this fact are discussed.

This article was identified by the SoS Best Scientific Cybersecurity Paper Competition Distinguished Experts as a Science of Security Significant Paper.

The Science of Security Paper Competition was developed to recognize and honor recently published papers that advance the science of cybersecurity. During the development of the competition, members of the Distinguished Experts group suggested that listing papers that made outstanding contributions, empirical or theoretical, to the science of cybersecurity in earlier years would also benefit the research community.

1982
Robling Denning, Dorothy Elizabeth.  1982.  Cryptography and Data Security. :414.

Electronic computers have evolved from exiguous experimental enterprises in the 1940s to prolific practical data processing systems in the 1980s. As we have come to rely on these systems to process and store data, we have also come to wonder about their ability to protect valuable data.

Data security is the science and study of methods of protecting data in computer and communication systems from unauthorized disclosure and modification. The goal of this book is to introduce the mathematical principles of data security and to show how these principles apply to operating systems, database systems, and computer networks. The book is for students and professionals seeking an introduction to these principles. There are many references for those who would like to study specific topics further.

Data security has evolved rapidly since 1975. We have seen exciting developments in cryptography: public-key encryption, digital signatures, the Data Encryption Standard (DES), key safeguarding schemes, and key distribution protocols. We have developed techniques for verifying that programs do not leak confidential data, or transmit classified data to users with lower security clearances. We have found new controls for protecting data in statistical databases--and new methods of attacking these databases. We have come to a better understanding of the theoretical and practical limitations to security.

This article was identified by the SoS Best Scientific Cybersecurity Paper Competition Distinguished Experts as a Science of Security Significant Paper. The Science of Security Paper Competition was developed to recognize and honor recently published papers that advance the science of cybersecurity. During the development of the competition, members of the Distinguished Experts group suggested that listing papers that made outstanding contributions, empirical or theoretical, to the science of cybersecurity in earlier years would also benefit the research community.

1984
Thompson, Ken.  1984.  Reflections on Trusting Trust. Commun. ACM. 27:761–763.

To what extent should one trust a statement that a program is free of Trojan horses? Perhaps it is more important to trust the people who wrote the software.

This article was identified by the SoS Best Scientific Cybersecurity Paper Competition Distinguished Experts as a Science of Security Significant Paper. The Science of Security Paper Competition was developed to recognize and honor recently published papers that advance the science of cybersecurity. During the development of the competition, members of the Distinguished Experts group suggested that listing papers that made outstanding contributions, empirical or theoretical, to the science of cybersecurity in earlier years would also benefit the research community.

Thompson, Ken.  1984.  Reflections on Trusting Trust. Commun. ACM. 27:761–763.
To what extent should one trust a statement that a program is free of Trojan horses? Perhaps it is more important to trust the people who wrote the software.
2000
Schneider, Fred B..  2000.  Enforceable Security Policies. ACM Trans. Inf. Syst. Secur.. 3:30–50.
A precise characterization is given for the class of security policies enforceable with mechanisms that work by monitoring system execution, and automata are introduced for specifying exactly that class of security policies. Techniques to enforce security policies specified by such automata are also discussed.
Schneider, Fred B..  2000.  Enforceable Security Policies. ACM Trans. Inf. Syst. Secur.. 3:30–50.

A precise characterization is given for the class of security policies enforceable with mechanisms that work by monitoring system execution, and automata are introduced for specifying exactly that class of security policies. Techniques to enforce security policies specified by such automata are also discussed.

This article was identified by the SoS Best Scientific Cybersecurity Paper Competition Distinguished Experts as a Science of Security Significant Paper. The Science of Security Paper Competition was developed to recognize and honor recently published papers that advance the science of cybersecurity. During the development of the competition, members of the Distinguished Experts group suggested that listing papers that made outstanding contributions, empirical or theoretical, to the science of cybersecurity in earlier years would also benefit the research community.

2003
Dinur, Irit, Nissim, Kobbi.  2003.  Revealing Information While Preserving Privacy. Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. :202–210.

We examine the tradeoff between privacy and usability of statistical databases. We model a statistical database by an n-bit string d1,..,dn, with a query being a subset q ⊆ [n] to be answered by Σiεqdi. Our main result is a polynomial reconstruction algorithm of data from noisy (perturbed) subset sums. Applying this reconstruction algorithm to statistical databases we show that in order to achieve privacy one has to add perturbation of magnitude (Ω√n). That is, smaller perturbation always results in a strong violation of privacy. We show that this result is tight by exemplifying access algorithms for statistical databases that preserve privacy while adding perturbation of magnitude Õ(√n).For time-T bounded adversaries we demonstrate a privacypreserving access algorithm whose perturbation magnitude is ≈ √T.

2004
Prabhakaran, Manoj, Sahai, Amit.  2004.  New Notions of Security: Achieving Universal Composability Without Trusted Setup. Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing. :242–251.

We propose a modification to the framework of Universally Composable (UC) security [3]. Our new notion involves comparing the real protocol execution with an ideal execution involving ideal functionalities (just as in UC-security), but allowing the environment and adversary access to some super-polynomial computational power. We argue the meaningfulness of the new notion, which in particular subsumes many of the traditional notions of security. We generalize the Universal Composition theorem of [3] to the new setting. Then under new computational assumptions, we realize secure multi-party computation (for static adversaries) without a common reference string or any other set-up assumptions, in the new framework. This is known to be impossible under the UC framework.

Du, Xiaojiang.  2004.  Using k-nearest neighbor method to identify poison message failure. IEEE Global Telecommunications Conference, 2004. GLOBECOM '04. 4:2113–2117Vol.4.

Poison message failure is a mechanism that has been responsible for large scale failures in both telecommunications and IP networks. The poison message failure can propagate in the network and cause an unstable network. We apply a machine learning, data mining technique in the network fault management area. We use the k-nearest neighbor method to identity the poison message failure. We also propose a "probabilistic" k-nearest neighbor method which outputs a probability distribution about the poison message. Through extensive simulations, we show that the k-nearest neighbor method is very effective in identifying the responsible message type.

2005
Katz, Jonathan, Shin, Ji Sun.  2005.  Modeling Insider Attacks on Group Key-exchange Protocols. Proceedings of the 12th ACM Conference on Computer and Communications Security. :180–189.

Protocols for authenticated key exchange (AKE) allow parties within an insecure network to establish a common session key which can then be used to secure their future communication. It is fair to say that group AKE is currently less well understood than the case of two-party AKE; in particular, attacks by malicious insiders –- a concern specific to the group setting –- have so far been considered only in a relatively "ad-hoc" fashion. The main contribution of this work is to address this deficiency by providing a formal, comprehensive model and definition of security for group AKE which automatically encompasses insider attacks. We do so by defining an appropriate ideal functionality for group AKE within the universal composability (UC) framework. As a side benefit, any protocol secure with respect to our definition is secure even when run concurrently with other protocols, and the key generated by any such protocol may be used securely in any subsequent application.In addition to proposing this definition, we show that the resulting notion of security is strictly stronger than the one proposed by Bresson, et al. (termed "AKE-security"), and that our definition implies all previously-suggested notions of security against insider attacks. We also show a simple technique for converting any AKE-secure protocol into one secure with respect to our definition.

2006
Sekine, Junko, Campos-Náñnez, Enrique, Harrald, John R., Abeledo, Hernán.  2006.  A Simulation-Based Approach to Trade-off Analysis of Port Security. Proceedings of the 38th Conference on Winter Simulation. :521–528.

Motivated by the September 11 attacks, we are addressing the problem of policy analysis of supply-chain security. Considering the potential economic and operational impacts of inspection together with the inherent difficulty of assigning a reasonable cost to an inspection failure call for a policy analysis methodology in which stakeholders can understand the trade-offs between the diverse and potentially conflicting objectives. To obtain this information, we used a simulation-based methodology to characterize the set of Pareto optimal solutions with respect to the multiple objectives represented in the decision problem. Our methodology relies on simulation and the response surface method (RSM) to model the relationships between inspection policies and relevant stakeholder objectives in order to construct a set of Pareto optimal solutions. The approach is illustrated with an application to a real-world supply chain.

2007
Yoneyama, Kazuki, Ohta, Kazuo.  2007.  Ring Signatures: Universally Composable Definitions and Constructions. Proceedings of the 2Nd ACM Symposium on Information, Computer and Communications Security. :374–376.

Though anonymity of ring signature schemes has been studied in many literatures for a long time, these papers showed different definitions and there is no consensus. Recently, Bender et al. proposed two new anonymity definitions of ring signature which is stronger than the traditional definition, that are called anonymity against attribution attacks/full key exposure. Also, ring signature schemes have two levels of unforgeability definitions, i.e., existential un-forgeability (eUF) and strong existential unforgeability (sUF). In this paper, we will redefine anonymity and unforgeability definitions from the standpoint of universally composable (UC) security framework. First, we will formulate new ideal functionalities of ring signature schemes for each security levels separately. Next, we will show relations between cryptographic security definitions and our UC definitions. Finally, we will give another proof of the Bender et al.'s ring signature scheme following the UC secure definition by constructing a simulator to an adversary of sUF, which can be adaptable to the case of sUF under the assumption of a standard single sUF signature scheme.

2008
Chan, Ellick M., Carlyle, Jeffrey C., David, Francis M., Farivar, Reza, Campbell, Roy H..  2008.  BootJacker: Compromising Computers Using Forced Restarts. Proceedings of the 15th ACM Conference on Computer and Communications Security. :555–564.

BootJacker is a proof-of-concept attack tool which demonstrates that authentication mechanisms employed by an operating system can be bypassed by obtaining physical access and simply forcing a restart. The key insight that enables this attack is that the contents of memory on some machines are fully preserved across a warm boot. Upon a reboot, BootJacker uses this residual memory state to revive the original host operating system environment and run malicious payloads. Using BootJacker, an attacker can break into a locked user session and gain access to open encrypted disks, web browser sessions or other secure network connections. BootJacker's non-persistent design makes it possible for an attacker to leave no traces on the victim machine.

Liu, C., Feng, Y., Fan, M., Wang, G..  2008.  PKI Mesh Trust Model Based on Trusted Computing. 2008 The 9th International Conference for Young Computer Scientists. :1401–1405.

Different organizations or countries maybe adopt different PKI trust model in real applications. On a large scale, all certification authorities (CA) and end entities construct a huge mesh network. PKI trust model exhibits unstructured mesh network as a whole. However, mesh trust model worsens computational complexity in certification path processing when the number of PKI domains increases. This paper proposes an enhanced mesh trust model for PKI. Keys generation and signature are fulfilled in Trusted Platform Module (TPM) for higher security level. An algorithm is suggested to improve the performance of certification path processing in this model. This trust model is less complex but more efficient and robust than the existing PKI trust models.

Phillips, B. J., Schmidt, C. D., Kelly, D. R..  2008.  Recovering Data from USB Flash Memory Sticks That Have Been Damaged or Electronically Erased. Proceedings of the 1st International Conference on Forensic Applications and Techniques in Telecommunications, Information, and Multimedia and Workshop. :19:1–19:6.

In this paper we consider recovering data from USB Flash memory sticks after they have been damaged or electronically erased. We describe the physical structure and theory of operation of Flash memories; review the literature of Flash memory data recovery; and report results of new experiments in which we damage USB Flash memory sticks and attempt to recover their contents. The experiments include smashing and shooting memory sticks, incinerating them in petrol and cooking them in a microwave oven.

2009
Chen, Jing, Du, Ruiying.  2009.  Fault Tolerance and Security in Forwarding Packets Using Game Theory. 2009 International Conference on Multimedia Information Networking and Security. 2:534–537.
In self-organized wireless network, such as ad hoc network, sensor network or mesh network, nodes are independent individuals which have different benefit; Therefore, selfish nodes refuse to forward packets for other nodes in order to save energy which causes the network fault. At the same time, some nodes may be malicious, whose aim is to damage the network. In this paper, we analyze the cooperation stimulation and security in self-organized wireless networks under a game theoretic framework. We first analyze a four node wireless network in which nodes share the channel by relaying for others during its idle periods in order to help the other nodes, each node has to use a part of its available channel capacity. And then, the fault tolerance and security problem is modeled as a non-cooperative game in which each player maximizes its own utility function. The goal of the game is to maximize the utility function in the giving condition in order to get better network efficiency. At last, for characterizing the efficiency of Nash equilibria, we analyze the so called price of anarchy, as the ratio between the objective function at the worst Nash equilibrium and the optimal objective function. Our results show that the players can get the biggest payoff if they obey cooperation strategy.
Ingols, Kyle, Chu, Matthew, Lippmann, Richard, Webster, Seth, Boyer, Stephen.  2009.  Modeling Modern Network Attacks and Countermeasures Using Attack Graphs. 2009 Annual Computer Security Applications Conference. :117–126.
By accurately measuring risk for enterprise networks, attack graphs allow network defenders to understand the most critical threats and select the most effective countermeasures. This paper describes substantial enhancements to the NetSPA attack graph system required to model additional present-day threats (zero-day exploits and client-side attacks) and countermeasures (intrusion prevention systems, proxy firewalls, personal firewalls, and host-based vulnerability scans). Point-to-point reachability algorithms and structures were extensively redesigned to support "reverse" reachability computations and personal firewalls. Host-based vulnerability scans are imported and analyzed. Analysis of an operational network with 84 hosts demonstrates that client-side attacks pose a serious threat. Experiments on larger simulated networks demonstrated that NetSPA's previous excellent scaling is maintained. Less than two minutes are required to completely analyze a four-enclave simulated network with more than 40,000 hosts protected by personal firewalls.
Halderman, J. Alex, Schoen, Seth D., Heninger, Nadia, Clarkson, William, Paul, William, Calandrino, Joseph A., Feldman, Ariel J., Appelbaum, Jacob, Felten, Edward W..  2009.  Lest We Remember: Cold-boot Attacks on Encryption Keys. Commun. ACM. 52:91–98.

Contrary to widespread assumption, dynamic RAM (DRAM), the main memory in most modern computers, retains its contents for several seconds after power is lost, even at room temperature and even if removed from a motherboard. Although DRAM becomes less reliable when it is not refreshed, it is not immediately erased, and its contents persist sufficiently for malicious (or forensic) acquisition of usable full-system memory images. We show that this phenomenon limits the ability of an operating system to protect cryptographic key material from an attacker with physical access to a machine. It poses a particular threat to laptop users who rely on disk encryption: we demonstrate that it could be used to compromise several popular disk encryption products without the need for any special devices or materials. We experimentally characterize the extent and predictability of memory retention and report that remanence times can be increased dramatically with simple cooling techniques. We offer new algorithms for finding cryptographic keys in memory images and for correcting errors caused by bit decay. Though we discuss several strategies for mitigating these risks, we know of no simple remedy that would eliminate them.

Bianculli, Domenico, Binder, Walter, Drago, Mauro Luigi, Ghezzi, Carlo.  2009.  ReMan: A Pro-active Reputation Management Infrastructure for Composite Web Services. Proceedings of the 31st International Conference on Software Engineering. :623–626.

REMAN is a reputation management infrastructure for composite Web services. It supports the aggregation of client feedback on the perceived QoS of external services, using reputation mechanisms to build service rankings. Changes in rankings are pro-actively notified to composite service clients to enable self-tuning properties in their execution.

2010
Zadig, Sean M., Tejay, Gurvirender.  2010.  Securing IS assets through hacker deterrence: A case study. 2010 eCrime Researchers Summit. :1–7.
Computer crime is a topic prevalent in both the research literature and in industry, due to a number of recent high-profile cyber attacks on e-commerce organizations. While technical means for defending against internal and external hackers have been discussed at great length, researchers have shown a distinct preference towards understanding deterrence of the internal threat and have paid little attention to external deterrence. This paper uses the criminological thesis known as Broken Windows Theory to understand how external computer criminals might be deterred from attacking a particular organization. The theory's focus upon disorder as a precursor to crime is discussed, and the notion of decreasing public IS disorder to create the illusion of strong information systems security is examined. A case study of a victim e-commerce organization is reviewed in light of the theory and implications for research and practice are discussed.
Chan, Ellick, Venkataraman, Shivaram, David, Francis, Chaugule, Amey, Campbell, Roy.  2010.  Forenscope: A Framework for Live Forensics. Proceedings of the 26th Annual Computer Security Applications Conference. :307–316.

Current post-mortem cyber-forensic techniques may cause significant disruption to the evidence gathering process by breaking active network connections and unmounting encrypted disks. Although newer live forensic analysis tools can preserve active state, they may taint evidence by leaving footprints in memory. To help address these concerns we present Forenscope, a framework that allows an investigator to examine the state of an active system without the effects of taint or forensic blurriness caused by analyzing a running system. We show how Forenscope can fit into accepted workflows to improve the evidence gathering process. Forenscope preserves the state of the running system and allows running processes, open files, encrypted filesystems and open network sockets to persist during the analysis process. Forenscope has been tested on live systems to show that it does not operationally disrupt critical processes and that it can perform an analysis in less than 15 seconds while using only 125 KB of memory. We show that Forenscope can detect stealth rootkits, neutralize threats and expedite the investigation process by finding evidence in memory.