
CPS: Medium: GOALI: Enabling Scalable Real-Time Certification for AI-Oriented Safety-Critical Systems

https://www.cs.unc.edu/~anderson/projects/rtai.html

PI: Jim Anderson (UNC). Co-PIs: F. Don Smith (UNC), Ron Alterovitz (UNC), and Prakash Sarathy (Northrop Grumman)

Students: Joshua Bakita, Tanya Amert, Sergey Voronov, Syed Ali, Zelin Tong, Rohan Wagle, Sizhe Liu, and Angelos Angelopoulos

Goal 1: Timing Analysis for Componentized Systems with GPUs

Components of tasks receive periodic time
slices on some number of CPUs (ex: Fig 1).
These CPUs are only partially available to a
component, so we develop transformations
to adapt conventional timing analysis [8].

To enforce time-partitioning, we uncover
and address difficulties on modern systems,
including SMI [5] and p-threads [3] bugs.

This allows each component to use an arbitrary scheduler, but does not address GPU
use—past work only allows one component to use the GPU.

We decompose AI-oriented workloads into swappable
components that are isolated from one another, allowing
intra-component timing constraints to be verified independently.
To isolate components from one another, we develop time and
space partitioning techniques that support Multicore+GPU
platforms, and update timing analysis.

Some of the most compelling use-cases for intelligent autonomy
fall in safety-critical areas such as aviation and automotive.
Certification is essential in these areas, but systems must be built
compositionally; for example, a perception system must be able
to be developed, certified, and upgraded independently of the
planner, controller, or logging systems. Ensuing such
independence is an unsolved problem for complex workloads,
and for multicore platforms with accelerators.

On this poster, we use the GPU as a representative accelerator.

1. Timing Analysis for Componentized Systems with GPUs

2. Time Partitioning for Componentized Systems with GPUs

3. Space Partitioning for Componentized Systems with GPUs

4. Methods for Validating Component Timing Constraints

5. Evaluation with "Real" AI-Oriented Avionics Workloads

Motivation

Goal 2: Enable GPUs in Componentized Systems: Time Partitioning

Goal 4: Methods for Validating Component Timing Constraints

Project Focus

Goals

To allow multiple components to use the GPU, GPU
tasks (kernels) must not overrun their time slice. By
leveraging the predictable nature of GPU kernel
execution times, we achieve this through preventing
kernels that may overrun from launching [7]. This is
shown at right, where we amend the system of Fig. 1
to allow Component B to also use the GPU.

This allows multiple components to use the GPU, but
not at the same time. We address this next.

Broader Impacts

Broadening Participation in Computing: TOPICS

The fruition of our work is a society filled with safer, longer-lasting, and more-efficient
autonomous systems. Some already-realized broader impacts:

• TOPICS: Talking Over Papers In Computer Science.
• A reading group for undergraduate woman in CS.
• We read papers out loud (you read that right) and

discuss them.
• We have read papers on everything from quantum

computing to AI to computer security to Turing
Award lectures.

• We also talk about writing tips, applying to graduate
school, and other things.

• We have only two rules:
• No such thing as a dumb question.
• No work outside of our one hour per week.

• A fun group with interesting discussions.

2024 NSF Cyber-Physical Systems Principal Investigators' Meeting

March 20-21, 2024

Goal 3: Enable GPUs in Componentized Systems: Space Partitioning

 Award ID#: 2038855

Jan 2021 to Dec 2024 (est.)

[1] J. Bakita & J. Anderson, “Extending HW Compute Partitioning
on NVIDIA GPUs to Composable Systems,” in sub. to EMSOFT’24.
[2] S. Ali, Z. Tong, and J. Anderson, “Predictable GPU Sharing in
Component-Based Real-Time Systems,” in sub. to ECRTS'24.
[3] R. Wagle, S. Liu, and J. Anderson, “Autonomy Today: Many
Delay-Prone Black Boxes,” in sub. to ECRTS'24.
[4] J. Bakita and J. Anderson, “Demystifying NVIDIA GPU
Internals to Enable Reliable GPU Management,” in RTAS'24.
[5] R. Wagle, Z. Tong, R. Sites, and J. Anderson, “Want
Predictable GPU Execution? Beware SMIs!” in ICPADS'23.
[6] J. Bakita and J. Anderson, “Hardware Compute Partitioning on
NVIDIA GPUs,” in RTAS'23.
[7] T. Amert, Z. Tong, S. Voronov, J. Bakita, F.D. Smith, and J.
Anderson, “TimeWall: Enabling Time Partitioning for Real-Time
Multicore+Accelerator Platforms,” in RTSS'21.
[8] S. Voronov, S. Tang, T. Amert, and J. Anderson, “AI Meets
Real-Time: Addressing Real-World Complexities in Graph
Response-Time Analysis,” in RTSS'21.

Selected Publications (Out of 18 Total)

The tasks inside a component may also need to share the GPU. We develop a per-SM
locking protocol which allows for more than one task to simultaneously use the GPU at a
time inside a component [2].

We have also completed three works which enable response-time bounding, budgeting,
and support for new hardware for intra-component processing graphs (see online).

Fig. 5: A recent TOPICS meeting.

Goal 5: Evaluate with "Real" AI-Oriented Avionics Workloads

Our system which implements our work from Goal 1 and Goal
2, known as TimeWall, has been demonstrated to provide the
necessary isolation between flight-critical and auxiliary tasks
(each encapsulated in components) for a simulated quadcopter
drone. We are presently porting this demonstrated to a
physical drone with an embedded integrated NVIDIA GPU.

Please see our demo, which shows TimeWall at work.

To enable multiple components to use the GPU at the
same time, we develop hardware-enforced partitioning
of NVIDIA GPU engines [4] and compute cores [1, 6].

This allows multiple components to concurrently use
mutually-exclusive portions of the GPU; shown in Fig. 3.

Fig. 1. Components A, B, and C on three CPUs and a GPU.

Fig. 2. Forbidden zones allow Components A
and B to use the GPU at different times.

Fig. 3. Components B and C can concurrently
use the GPU, once it is spatially partitioned.

Fig. 4. GPU partitions can be dynamically changed, are
hardware-enforced, and do not require task modification.

Our work [6] (an experimental example
shown in Fig. 4) has led to collaboration
with NVIDIA Research, and our other
work [4] has uncovered flaws in three
widely accepted GPU-management and
-analysis techniques.

Fig. 5. Simulated quadcopter
running on TimeWall

• Summer internships at Northrop
Grumman, 2021, 2022, 2023.

• Bi-weekly meetings with DoD partners
on evolving avionics certification.

• Outreach efforts to obtain industry
perspectives from key players (e.g.,
Bosch, Apex.AI, NVIDIA).

• Two dissertations (Voronov & Amert).

• An undergraduate GPU research group.

• A reading group for undergraduate
woman (more below).

