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Background and Motivation
• Data compression eases communication over-

load in data-rich multi-sensor networks.
• Often, data collected by sensors is correlated and

also analyzed by AI algorithms, not humans.
• Our goal is to (1) eliminate redundant informa-

tion transmission from correlated data, (2) fo-
cus on transmitting task-relevant features, and
(3) dynamically allocate bandwidth to sensors
based on the importance of the task.

Contributions
• Identifying and measuring the importance of

task-relevant features
• Elevating task performance by transmitting

task-relevant features under bandwidth con-
straint.

• Theoretical analysis and optimal solution for the
case of a linear compressor and task.

• A task-aware distributed source coding frame-
work that performs variable-rate compression
using a single model.

Notation
• X: correlated data
• Z: representations of data
• E: encoder
• D: decoder

• Φ: task function
• Y : task output
• L: loss function
• X̂ : reconstructed data

Problem Formulation

argmin
E1,...,Ek,D

Ltask(Y, Ŷ ) + λLrec(x, x̂)

s.t. x̂i = D(E1(x1)), for i = 1, ..., k

Y = Φ(x1, . . . , xk)
Ŷ = Φ(x̂1, . . . , x̂k))

Neural Distributed Principal Component Analysis (NDPCA) Framework
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Figure: Task-aware distributed source coding with NDPCA: X1, . . . , Xk are correlated data sources. Neural encoders
E1, . . . , Ek independently compress data to latent representations Z1, . . . , Zk. The proposed DPCA module, which is a linear
matrix, allocates the bandwidth of sources based on the importance of the task Φ.
• The framework uses neural encoders and their corresponding neural decoder to minimize the task loss,

by measuring the task-performance on the reconstructed data, ϕ(X̂), and on uncompressed data, ϕ(X).
• The neural autoencoders are encouraged to generate low-rank representations Z, which helps achieve

a systematic trade-off between latent dimension and performance with a single model.

Experimental Results
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Figure: Top: Our method achieves equal or higher performance than other methods while reaching the upper bound of
performance without data compression. Bottom: Distribution of total available bandwidth (latent space) among the two
sources for NDPCA. The unequal allocation highlights the difference in the importance of the sources for a given task.

Datasets

Figure: Two columns represent different sources of data.
The two sources are correlated, but one is considered
more important than the other because it is more
relevant to the downstream task.
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Figure: We can use a weighted reconstruction loss to trade
off task-awareness and task-agnostic. Weighted task-aware
images faintly reconstruct the original images while
restoring task-relevant features with high-frequency noise.

Takeaways
• We design a data compression framework for dis-

tributed source coding of correlated sources in
the presence of a task that adapts to any com-
munication bottleneck with a single model,
without the need for retraining.

• Using our method, we can measure the impor-
tance of the task and allocate bandwidth to
sources correspondingly.


