

Honda Research Institute US

Background and Motivation

- Data compression eases communication overload in data-rich multi-sensor networks.
- Often, data collected by sensors is correlated and also analyzed by AI algorithms, not humans.
- Our goal is to (1) eliminate redundant information transmission from correlated data, (2) focus on transmitting task-relevant features, and (3) dynamically allocate bandwidth to sensors based on the importance of the task.

Contributions

- Identifying and measuring the importance of task-relevant features
- Elevating task performance by transmitting task-relevant features under bandwidth constraint.
- Theoretical analysis and optimal solution for the case of a **linear** compressor and task.
- A task-aware distributed source coding framework that performs variable-rate compression using a single model.

Notation

- X: correlated data
- Z: representations of data Y: task output
- *E*: encoder
- *D*: decoder
- Φ : task function
- \mathcal{L} : loss function
- \hat{X} : reconstructed data

Problem Formulation

argmin $\mathcal{L}_{\mathsf{task}}(Y, \hat{Y}) + \lambda \mathcal{L}_{\mathsf{rec}}(x, \hat{x})$ E_1,\ldots,E_k,D s.t. $\hat{x}_i = D(E_1(x_1))$, for i = 1, ..., k $Y = \Phi(x_1, \ldots, x_k)$ $\hat{Y} = \Phi(\hat{x}_1, \dots, \hat{x}_k))$

Task-aware Distributed Source Coding under Dynamic Bandwidth

Po-han Li^{*1}, Sravan Kumar Ankireddy^{*1}, Ruihan Zhao¹, Hossein Nourkhiz Mahjoub², Ehsan Moradi-Pari², Ufuk Topcu¹, Sandeep Chinchali¹, Hyeji Kim¹

*Equal contribution, ¹University of Texas at Austin, ²Honda Research Institute

sources correspondingly.