
Developing Technique for Anomaly Detection
in Software Behaviors
Yutaro Kashiwa, Nara Institute of Science and Technology, Japan

1. Project Challenge

co
de

 c
ha

ng
es

 (l
in

e)

Only a few lines of
code change induce defects

behavior changes (line)

Accepted in the 31st IEEE Intl. Conf. on Software Analysis,
Evolution and Reengineering (SANER’24) [CORE A]
Title: “TraceJIT: Evaluating the Impact of Behavioral Code Change
on Just-In-Time Defect Prediction”

4. Major Outcomes

5. Future Goals3. Broader Impact

2. Intellectual Merit

Behavior metrics improves up to 45% of
the precision to predict defects in changes

How can anomalies be detected
efficiently and precisely?

How can intentional changes
be detected?

How can anomaly behavior be identified?

GOAL: Find anomalies without human-created tests

Quality Assurance as α Service (QAaaS)

Realtime Anomaly Detection in Software Behavior

Why these defects cannot be detected?

Tests verify only the inputs and outputs

Easy for humans to make tests

Does not verify which lines of source code
were exercised

It is challenging to create test-suites
covering all possible inputs and states

because of limited time and complex societies

Software becomes large-scale and complex but
time and human-resources for testing are limited

→Likely to miss defects if source code is
 not well-covered by test suites

Patches with defects passed Linux’s quality
assurance process known for its strictness

Internal developers are no longer able to be trusted

The proposed approach does
not require knowing the
specifications of products
→Enables the outsourcing of
quality assurance

Dramatically reduce software development effort

Detect software anomalies before physical anomalies happen

Developing l ight-weight
dynamic software analysis
tools enable the monitoring
of running software

This research plan tackles three challenges

Monitors behaviors before and after changes

Previous studies assume that larger changes
are more likely to induce bugs but in reality…

Exploit trace logs generated during test
exercises with dynamic analysis tools

