Developing Technique for Anomaly Detection

in Software Behaviors

i NAIST

“ @
Yutaro Kashiwa, Nara Institute of Science and Technology, Japan v

1. Project Challenge

2. Intellectual Merit 4. Major Outcomes

Internal developers are no longer able to be trusted GOAL: Find anomalies without human-created tests Previous studies assume that larger changes

Linux team in public bust-up over fake “patches”
to introduce bugs

Embarrassed overreaction or righteous indignation? An
academic research group has provoked the Linux crew to ban
their whole university!

Patches with defects passed Linux’s quality
assurance process known for its strictness

Why these defects cannot be detected?

Eclipse IDE for Java

November 2019
Code: 9,177,828

's and Blank Lines °
i 22x ~ Comments: 2,494,282
Blanks: 1,250,833
Code: 406,764 /
* Comments: 195,316
Blanks: 61,248

- ———————

Software becomes large-scale and complex but
time and human-resources for testing are limited

Tests verify only the inputs and outputs

[}

3
¢

LER

Software

@
4
o
8
2
&

LER

g
a
°
8
2
s

J Easy for humans to make tests
Does not verify which lines of source code
were exercise

—Likely to miss defects if source code is
not well-covered by test suites

It is challenging to create test-suites
covering all possible inputs and states
because of limited time and complex societies

are more likely to induce bugs but in reality...

[= ; =1y
I - LT
Dev. Old Source code New Source code &= [] h

—_ @ : Non Bug inducing commits
g X : Bug inducing commits
) ! ! ~ Homes Factories — o I f I' f
i B - nly a few lines o
Automated Testing = 7)) .
E . _) D (=% == @ 200 ° [code change induce defects]
Dynamic Analysis] ________ o) o)) r
] Shops Tra_nsportatlons c Y ® . ® e o
* + Release if no anomalies © ° ° °
Quanti R °
% -> 4— % E.g., A class is modified (&) |. [4 e % °
subpoous |Old Tecslogs New Trace logs o Pee o® .
behavior % class A class B -g m_ 9o — < l.._ —_ — — — _..
o "o ¥ ¥ > o oCTEEEE :‘:2‘a _~o-BE - S %03)
< - 0 400
Mﬁger i = J](Eogs t,acﬁgs behavior changes (line)
. . . o . o
Monitors behaviors before and after changes Behavu?r.metrlcs i [P L e 45% of
the precision to predict defects in changes
Exploit trace Iogs generated during test Accepted in the 31st IEEE Intl. Conf. on Software Analysis,
. . . . Evolution and Reengineering (SANER’24) [CORE A]
exercises with dynamlc anaIyS|s tools Title: “TraceJIT: Evaluating the Impact of Behavioral Code Change
on Just-In-Time Defect Prediction”
3. Broader Impact 5. Future Goals
Quality Assurance as a Service (QAaaS) This research plan tackles three challenges

The proposed approach does

&
not require knowing the =3 x How can anomalies be detected
specifications of products iﬁg . efficiently and precisely?
—Enables the outsourcing of '~ ‘

quality assurance Cloud Service Software Testing How can intentional changes
?
Dramatically reduce software development effort be detected?

Realtime Anomaly Detection in Software Behavior =~ G288 ===)

Developing light-weight
dynamic software analysis
tools enable the monitoring

of running software : Humans can detect
(Self-Driving) (Fin-Tech)

YHOW can anomaly behavior be identified?

Recall

Detect software anomalies before physical anomalies happen

Precision

