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Solution: 

• New algorithms for risk-aware planning for systems 
subject to Non-Gaussian uncertainties.

• Novel algorithms for modeling humans’ decision making 
under uncertainty.

• New game-theoretic planning algorithms that account for 
the feedback interactions between risk-aware agents.

Boarder Impact: 
Safe human-robot interaction in safety-critical applications 
such as autonomous driving, drone delivery, assistive 
robotics, and in general multi-agent collaboration and 
coordination. 

Challenges: 
• Reasoning about risk and uncertainties over time 

horizons.
• Model human behavior in risky scenarios.
• Accounting for interactions between risk-aware 

agents.

Scientific Impact: 
• New algorithms for achieving safety in the presence 

of uncertainties
• Safety in any CPS domain that requires interactions 

with humans

Education and Outreach: 
- Developing advanced graduate-level courses at UC 

Berkeley and Stanford that incorporate the topics of 
this research

- Mentoring programs at UC Berkeley and Stanford
- Summer research program for high school students

In this project, we develop risk-aware control and planning algorithms for achieving safe human cyber-physical systems.
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P2 ✓2 -5 -3 -1 1 3 5

game 3.83±0.18 3.84±0.19 3.84±0.20 3.95±0.25 3.94±0.30 3.98±0.36
no-game 3.91±0.21 3.90±0.23 3.93±0.23 4.08±0.39 4.09±0.39 4.20±0.36

TABLE IV: Merge scenario: Time to finish merging maneu-
ver for P2 with different risk-sensitivity.

Fig. 6: A snapshot of CARLA roundabout environment. Red
car (bottom) is P1 and light pink car (right) is P2.

efficient trajectories compared to the baseline.

VI. DISCUSSION

In this work, we presented a game-theoretic planning
approach for risk-aware agents. The formulation of risk-
sensitive dynamic games provides insights to the interac-
tion between players. Compared to risk-neutral games, our
framework introduces new parameters that lead to safer and
more intuitive behaviors. The game aspect is also captured
to address the mutual influence between agents. Compared
with non-game risk-sensitive control, our algorithm achieves
better efficiency without sacrificing safety. The proposed
iterative linear exponential quadratic method is used to solve
nonlinear dynamic systems with nonlinear costs in real-time.
The performance is demonstrated in several case studies,
including a cross-intersection, an onramp merging maneuver
and a roundabout entering in driving simulator.

Limitations and future work: While the introduced
framework is insightful for understanding the interaction
between agents and has the potential to increase interpretabil-
ity of autonomous agents’ motion, we have not addressed
the problem of interaction with human players. To achieve
this goal, a human model is needed. For example, [31],
[32] uses inverse reinforcement learning to learn a reward
function. [33], [34] approaches the problem as a preference-
based learning problem. More recently, [35] estimates model
parameters online with a filtering algorithm. We would like
to pursue this direction for future work.
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Fig. 7: Frequency of P2 yielding to P1 when entering the
roundabout.

P2 ✓2 -10.0 0.0 10.0

game. 6.86±1.55 7.09±1.59 9.00±0.33
no-game 9.65±1.34 14.07±3.56 16.37±0.41

TABLE V: Roundabout scenario: Time to finish entering
roundabout for P2 with different risk-sensitivity values.

APPENDIX I
RISK SENSITIVE GAME WITH LINEAR DYNAMICS AND

AFFINE-QUADRATIC COSTS

First, we give the following equation, which would be-
come useful when deriving the Riccati equations for LEQ
game. The results could be derived using basic calculus.
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J = 1 if z�1 ⇧ ✓P . This is called “neurotic breakdown”
when ✓ is too large.

Now, we consider a two-person discrete-time infinite dy-
namic game. The dynamics equation of the system is given as
in (6) and the risk sensitive objective function in (5). We use
dynamic programming and induction to derive the solution.
Suppose at time step t, the optimal cost-to-go for player i is
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Then, going backwards, at time t,
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t ,Wt). Plug in (21,

22) and rearrange the above equation as a function of ui
t. To
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