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Scientific Impact:

Challenge:

. .  Using Transformer to predict cascading failures can be
 Correlations between CPS components are crucial for L . . .
helpful to simplify any complicated cascading process in

cascading failure understanding and describing CPS
complicated CPS cascading failures with simpler
models, yet the existing methods cannot accurately

e A new method to use the attention mechanism to reveal

the correlation of components. It is further extended to
reveal them. identify the most critical components in cascading failure.
 |n diffusion based cascading failure models derived e The deve oped sampling methods in Iarge-scale networks
with correlations, diffusion maximization and can be extended to other diffusion maximization and
mitigation problems are both #P-Hard. mitigation problems in various networks.
Solution:  Built simpler cascading failure models using the
* Trained the first Transformer based models to predict learned correlations.
CPS cascading failure with high accuracy. * Developed new efficient sampling algorithms for both
*  Useinitial failures to predict all components failed in the cascade. diffusion maximization and mitigation problems.
. Encoder-decoder moc{e/ .with component ids as input/target: f1 . A dynamic algorithm for diffusion maximization, the
score of 0.77 for predicting status of all components . cascade model parameters may change during diffusion
. Good at estimating overall cascade size. propagation
. Use initial failures to predict components failed in each round of . An adaptive algorithm for diffusion maximization, making

the cascade. decisions based on the current status of the cascades.

J Encoder-only model with dual representation of cascade as . An novel line blocking algorithm for diffusion mitigation
a0 training data: f1 score of 0.99 when predicting failed lines. , _ 5 d150 , nitig ’
ol b . . . . with an adaptive reachability calculation algorithm for
— " Revealed correlation using the attention mechanism. : : : C
Positions enerations estimating the impact of blocking lines.
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Broader Impact: Broader Impact:
e Better understanding of  Research opportunities for high school students
. _ . and students from underrepresented groups
Cascadmg failures will help * Senior design project opportunities
enhancing CPS security * Disseminated research results to high school and
undergraduate students in workshops and
seminars
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