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o A “socially-optimal mobility system,” is a mobility

system that is efficient (in terms of energy consumption
and travel time) and ensures equity in transportation.
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Technical Approach
Quantification of Mobility Equity

We aim to design mobility equity metric
(MEM) at a city-wide level that is agnostic to
preferences of individuals, evaluable with
publicly available data, and capable of
capturing multi-modal transportation and
other aspects such as accessibility, costs, and
societal factors.
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Mobility index (M) represents mobility (or
accessibility) from an origin i with respect to
the different parameters from social,
economic, and spatial factors, i.e., price
sensitivity k, user cost c¢,,, and accessible
services a3, () within a time threshold.
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Different Modes

Mobility equity metric (MEM) evaluates
how emerging mobility systems are
equitably provided at a city-wide level
using Gini index.
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Improving Mobility Equity via
Routing in Mixed Mobility Systems
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Mobility Equity 3
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(strategic routing)

Mobility Equity Maximization
For a given compliance rate, we solve the following problem:
Maximize MEM

subject to: 6% (w) < v

Problem (System-Centric Routing)
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where w., is the weight for transportation mode m.
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Cooperation Compliance Control

Incentivize noncompliant vehicles to comply
with the guidance by penalizing the
noncompliant behaviors. We define a global
cost (C to control the behavior of all users, and
local cost (o]} to ensure individuals being
priced based on their own behavior.
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Goal: Achieve Desired Compliance Probability
P(K) = plai + C(k) + ci(k))

where p: R — [0, 1] is a monotone increasing function, g; is the agent’s initial
proclivity of compliance.

How: Adopt Cooperation Compliance Control
N
Clk+1)=C(k) +a(Q ’T;”‘U‘”
1) = ci(k) M;(k})

cilk 3(Q"

Online Preference Learning

Devise expert with clustering algorithm

Algorithm 1 Expert With Cluster
Require: Number of clusters K, offline training data D, learning rate 7
‘Train with data D, receive {0 }ie/n)
Apply clustering on {6;};¢ (. receive centroids {ci }xe(x)
Initialize weight p; 1 (k) + 4 foralli € [N],k € [K]
fort=1 T do
fori= ,Ndo
Receive ;¢
Sample B ~ pi, submit Reci,
Receive y; 1, compute loss L; ¢ (k

Pren(t) o BB
end for
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Merging learning and control approaches for CPS and bridging the gap between
optimal planning and safe-critical control in CPS.
Develop a framework addressing societal challenges within CPS.

Broader Impact

o Develop a new mobility equity metric and equity-prioritized control framework for
emerging mobility systems.

o Develop a holistic and rigorous framework to capture the societal impact of CAVs
and provide solutions that enhance accessibility, safety, and equity in
transportation.
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