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Societal Impact

Challenge
• What does shift from simple to rich perceptual 

sensors mean for design of safety-critical CPS?

• Machine and deep learning are key, but are current 
methods suitable for safety-critical control loops?

Scientific Impact
• Principled integration of learning-based perception, prediction, planning, & 

control
• Modular design pipeline with meaningful interfaces that allow for end-to-

end metrics to be optimized
• Fundamental limits of robustness/performance in learning and perception-

based cyber-physical systems

Education and Outreach
• Developed new publicly available 

courses on Learning for Dynamics 
and Control at Penn

• Ran IEEE CDC 2021 workshop on 
robust deep learning-based control

• Industry collaborations with Google 
Robotics

Broader Impact
• Broadening participation: Matni & Daniilidis co-advise 

URM students on this project (2 woman, 1 BIPOC); 
• Self-driving vehicles: Approximately 38,000 people die 

every year in crashes on U.S roadways.  Studies suggest 
self-driving vehicles can reduce this number by up to 34%: 
robust perception-based autonomy is a key enabling 
technology for self-driving vehicles.
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Solution
Goal: a modular approach with meaningful interfaces 

that allow for end-to-end metrics to be optimized and/or 
guaranteedHypothesis: interfaces defined in terms of uncertainty 

representation & propagation between perception, 
prediction, planning, & control based on mid-level 

representations

Identifying & navigating tradeoffs
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Fundamental
Limits?

autonomous vehicles search & rescue

disaster & humanitarian relief
Fukushima “robot in hell” Zipline drone 

How should we design perception-based control pipelines for these very different systems?

safety >> performance
Bomb defusing robot

performance >> safety
Drone racing

Where on the system architecture continuum should we be?

modular 
+ ”easily” verified/validated, easier to integrate priors,
 ”better engineering”
- rigid interfaces, - limited end-to-end optimization

end-to-end 
high performance w/ end-to-end opt, adaptable +
lack safety guarantees, harder to integrate priors –

opaque/hard to troubleshoot,

co-design
+ rich interfaces
+ mid-level reps give robustness
+ end-to-end opt via module co-design

From Semantic SLAM to Semantic Navigation
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1. Predicts labels in unseen semantic map regions
2. Actively learns semantic map approach
3. Uses confidence bound objectives for active long-term 

goal selection

Active Semantic Goal Navigation (ICLR 2022)Uncertainty-driven Planner for Exploration and Navigation (ICRA 2022)
Uncertainty and risk-aware perception-based control

Learning Robust Output-Feedback Control Barrier 
Functions from Safe Expert Demonstrations

Data-driven risk verification
(CDC 2021, HSCC 2021)
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