High-Assurance Design of Learning-Enabled Cyber-Physical Systems with Deep Contracts

Pierluigi Nuzzo, Department of Electrical and Computer Engineering, University of Southern California

nuzzo@usc.edu

https://descyphy.usc.edu/research/cyber-physical-system-design/

Award ID#: 1846524

Learning-Enabled Cyber-Physical Systems

- Modern AI techniques enable adaptiveness and resilience of cyber-physical systems, but also bring more complexity, heterogeneity, approximations and uncertainty in the design **Requirements** are **not rigidly defined:** How to relate

component-level robustness to system-level objectives, such as safety, reliability, performance, cost?

Goal: A holistic framework including modeling techniques, specification formalisms, and scalable algorithms for the design and analysis of intelligent, autonomous, cyber-physical systems including AI-enabled components with high guarantees of correctness in a modular way

Research Organization

Reasoning with Deep Contracts

Contract C=(V,A,G): Set $V=I \cup O$ of variables Set A of assumptions Set G of guarantees

A, G: behaviors over V

An **implementation** M satisfies a contract if $M \cap A \subset G$ An **environment** E satisfies a contract if $E \subseteq A$

(A, G) is **compatible** iff $A \neq \emptyset$

(A, G) is **consistent** iff $G \neq \emptyset$

Existing contract frameworks (e.g., [Benveniste et al. '12, Nuzzo et al. '15, '18, '19]) enable modular verification, hierarchical refinement, and design reuse based on a rigorous calculus, but fall short of effectively capturing uncertainty, often leading to pessimistic solutions (over-design) or intractable representations

Deep Contracts for **compositional reasoning** about **probabilistic system behaviors**:

- Context-aware: describe components conditioned to their environment and overall system goals
- Stochastic: express and propagate uncertainty at different abstraction layers
- **Vertically-integrated:** bridge heterogeneous models and architectures across the design hierarchy
- **Pervasive:** offers mechanisms to monitor requirements for continual assurance

Stochastic Contracts for Requirement Analysis and Computer-Aided Construction of Assurance Cases

Leverage Stochastic Signal Temporal Logic (StSTL) to express assumptions and guarantees on real-time, real-valued, stochastic signals and formulate quantitative verification and synthesis problems as *robust* StSTL satisfiability problems

- P. Nuzzo et al., "Stochastic Assume-Guarantee Contracts for Cyber-Physical System Design," TECS'19
- C. Oh et al., "Optimizing Assume-Guarantee Contracts for Cyber-Physical System Design," DATE'19
- C. Oh et al., "Quantitative Verification and Design Space Exploration Under Uncertainty with Parametric Stochastic Contracts," ICCAD'22

Synthesis and **validation** of **assurance cases** as networks of stochastic contracts: Contracts offer the semantic foundation to capture claims, premises, and confidence

Hierarchical Stochastic Contract Network

Z. Daw et al., "Computer-Aided Evaluation for Argument-Based Certification," DASC'23, Best-in-Session Paper Award

Z. Daw et al., "AACE: Automated Assurance Case Environment for Aerospace Certification," DASC'23, Best-in-Session Paper Award C. Oh et al. "ARACHNE: Automated Validation of Assurance Cases with Stochastic Contract Networks." SAFECOMP'22

T. Wang et al., "Hierarchical Contract-Based Synthesis for Assurance Cases," NFM'22

T. Wang et al., "Computer-Aided Generation of Assurance Cases," SAFECOMP'23

certification

Execution of AACE (Automated Assurance

Case Environment) on ArduCopter Rotorcraft

Generated over 10⁵ arguments in

Computer-aided, compositional

transition from process-based to

property-based and continuous

<100 min for an industrial case study

construction of assurance cases helps

Verification of AI-Enabled Systems

Exact and cost-effective transformation to SDT: Up to 20x improvement in

verification time (MountainCar)

Theorem 2 (Complexity): SDT size scales polynomially with the width of the maximum

K. Chang et al., "Exact and Cost-Effective Automated Transformation of Neural Network Controllers to Decision Tree Controllers," CDC'23

Robustness Contracts: Compositional verification of closed-loop systems with deep reinforcement learning controllers against perception errors

N. Naik and P. Nuzzo, MEMOCODE '20, Best Paper Award

Co-Design of Topology, Scheduling, and Planning in Automated Warehouses

Framework

- Given a warehouse layout, a list of products and a time limit, find a motion plan for a team of robots which brings every product to a packaging station within a given timeframe
- Contract-based approach outperforms alternative methods and scales to real-world problems involving teams of hundreds of robots transporting a million products.

C. Leet et al., "Task Assignment, Scheduling and Motion Planning for Automated Warehouses for Million Product Workloads," IROS 2023 C. Leet et al., "Co-Design of Topology, Scheduling, and Path Planning in Automated Warehouses," DATE 2023

Logically Constrained Decision Making **Under Uncertainty**

- Optimal planning via reinforcement learning for Markov decision processes (MDPs) under signal temporal logic (STL)
- Optimal planning for partially observable MDPs (POMDPs) under finite linear temporal logic (LTL_f) specifications

K. Kalagarla et al., "Optimal Control of Partially Observable Markov Decision Processes with Finite Linear Temporal Logic Constraints," UAI 2022

- K. Kalagarla et al., "Model-Free Reinforcement Learning for Optimal Control of Markov Decision Processes Under Signal Temporal Logic Specifications," CDC'21
- K. Kalagarla et al., "A Sample-Efficient Algorithm for Episodic Finite-Horizon MDP with Constraints", AAAI'21 K. Kalagarla et al., "Optimal Control of Discounted-Reward Markov Decision Processes Under Linear Temporal Logic Specifications," ACC'21

Impact on Society and Education

- Provide the foundations for rapid, compositional, certified design and operation of adaptive and resilient learning-enabled cyber-physical systems for a broad range of applications: autonomous vehicles, robotics, industrial automation, medical devices, ...
- Research outcomes are part of an educational program focusing on systems engineering concepts and multidisciplinary methods to realize safe and cost-effective intelligent systems interacting with people
 - Pre-college: via the USC Viterbi SHINE Program
 - Undergraduate and graduate: via new labs and collateral initiatives such as the USC **AutoDRIVE Lab, the USC Autonomous Vehicles** Club, and the USC autonomous driving RaceOn! competition

SHINE

AutoDRIVE LAB

