

Generating high-precision soil moisture maps at 30m resolutions for the top 5 cm of soil. We integrate deep neural infusing the model training process with domain science.

Dataset	Training Dataset	Inference Dataset
gNATSGO	1.6 GB	8.6 GB
Polaris	2.4 GB	45 GB
Landsat	351 MB	8 GB
NLCD	114 MB	2.3 GB
Köppen Climate	76 MB	1.7 GB
DEM	241 MB	4.2 GB
GridMet	3.3 GB	92 MB
MCD15A3H (Interpolated)	41 GB	13.6 GB
SMAP	1.2 GB	93 MB
Hydroblocks	70 GB	-
In-situ Stations	1.4 GB	-
Total	121.68 GB	83.56 GB

Datasets used for Hydro SM Model

CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems Sangmi Lee Pallickara¹, Allan Andales¹, Jeff Niemann¹, Jay Breidt², and Shrideep Pallickara¹ Colorado State University¹ and NORC at the University of Chicago² A contract of the University of Chicago

pixels effectively. The model is able to accurately predict soil moisture variations based on the land cover type

NSF Funding Information Award Number: 2312319 Project period: October 2023 - September 2026

