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Challenge: Integrate UAVs, sensors, wildfire models, communications infrastructure for:

Solutions: Current fire models & communication needs => sensor deployment, closed-loop UAV path planning. Path Planning in Wildland Burn Environments
UAV/sensor data (hot-spot localization, ember tracking, perimeter monitoring, etc) = fire model updates.
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- Issues: Visibility due to forest canopy, calibration/alignment of
multiple LiDAR cameras

- pile burn data used for particle image velocimetry on embers

- ember tracking: one key to longer range fire spread

- characterized ember size, shape & density from real fuels et g

- identified shortcomings of ember generation & lofting models HRRIEN

Use ensemble sampling to propagate the statistics of uncertainty

—— Nojsy UAV observations

ssnnnnnnnn  Mjssing observations replaced with interpolation

—— Predicted perimeter (simulation model)

Predicted perimeter (ensemble KF, data assimilation)

Operational Firebrand Models vs. Observations
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Operational models rely on stead-state mean plume eqgns.

Larger embers display a greater variation in shape W hich int " o lociti I i 4. better
Large embers resemble irregular polygons with added noise e measure high intermittency in ember velocities, especially early’in., communication connectivity and more accurate fire prediction models can save
the fire—turbulence and plume time-dependence is important

Ember shape models could incorporate a mixture of spheres, disks and cylinders hundreds

of lives and millions of SS in property damage
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Ember generation mechanisms not wholly coupled to the
ire/turbulence

Future Directions: Autonomous coordination of muItlp[ rones, maintaining connectivity, handling large data volumes, real-time data flow to command center
Optimizing UAV trajectory, power allocation, and sensing while keeping communication interference at bay and minimizing energy consumption
What is the best mechanism for using UAV/sensor data to inform fire behavior model?
Parsing the large data sets is a challenge, as is calibration especially for optical (LiDAR) cameras
Ember generation & flow model must be incorporated into fire behavior models
Localized measurement of wind speed and direction is important for fire prediction, how to do this over a large area with few drones?
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