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Motivation

Design autonomous CPS capable of safely operating in
and adapting to previously unseen scenarios.

(Humans can do it!) T

Challenges

» Lack of training data (often single execution).
* Need to act while learning (no re-do!).
» Actionable information sparsely encoded in large data

sets.

Joint learning of features and manifolds
* Goal: learn parsimonious dynamical representations.
* Main idea: search for manifold where the dynamics
are linear (Koopman operators).

 Technical detalls:

 Use delayed coordinates and attention based tracking
« Enforce linear manifold dynamic
* Interpretable, manipulable representations
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Learning dynamic interactions
» (Goal: explain complex dynamics of interacting agents.
* Main idea: model interactions with a fully-connected
graph and Energy-based Models (EBM).

 Technical detalls:

« Trajectories are encoded as sets of potentials conditioning EBMs
« Atinference time, trajectories are predicted by satisfying these potentials

GNN Encoder

Observed trajectory Interaction Potentials Energy Optimization Final Prediction

Sampling (Langevin Dynamics)
Add handcrafted potentials

Replace with potentials

from other dynamic scenes 2023 ICML (Oral)
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Thrust R1:
Joint learning of
features and manifolds
What influence do the What to learn?
decisions have on the What matters in
Verifiable the system?

dynamics?
learning-enabled
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Thrust R3:
Verifiable < Thrust R2:

decision-making Real-time inference

What information to decide on?
How much confidence can put on
that information?

Verifiable safe data driven control
« (oal: data driven avoidance of an unsafe set.
* Main idea: enforce robust Nagumo-invariance .

* Technical details:
e Prior: non linear dynamics of the form:
x =F¢(x) + Gy(x)u+n F,G unknown
* |nitial condition set: X,, bad set: &, = {x: h(x) > 0}
» Experimental data: (u(tx),x(tx),x(tx)), 0 <tx <T
« Fact: bad set is avoided if there exist p(7), ¥ ()
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* Fact: reduces to a convex SDP via duality | S
e Fact: only imposes dp/dt < 0when p =0
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Application
* Public space monitoring to mitigate unsafe situations.

467 Survivors

Monitoring social distancing Active shooter scenario (joint with M. Siami)

Scientific Impact
« Rapprochement of Systems Theory, ML, Viability.
 Efficient extraction of actionable information from

large data sets.
* Frugal, explainable architectures for dynamics
oriented learning.

Broader Impact and Outreach

« Certified safe learning enabled systems that can
operate in close proximity to humans.

* Applications: health care, infrastructure monitoring,
public space monitoring.

* Qutreach through Northeastern’'s UPLIFT program.

* Internships at Adobe, Mathworks, Google.
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