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● Point cloud registration (relating two LiDAR scans from different 
poses) is a key step in localization/SLAM.

● We want a reliable way to perform global registration. I.e., no "good 
initialization" should be required for correctness.

● Existing algorithms are local and need point correspondences, 
which may not exist in LiDAR point cloud.

Problem

Context
● The perception pipeline of autonomous systems increasingly relies 

on deep learning methods, that provide no formal guarantees of 
correctness or performance.

● We aim to provide such guarantees, in two possible ways:
○ proving deterministic worst-case bounds on learning models;
○ using a supervisor to correct the learning method when needed 

(this poster). 
● Meeting our goals will have major impact by:

○ boosting the adoption of provably safe autonomous cars, UAVs, 
and other autonomous platforms..

○ reducing risks associated with existing autonomous vehicles
○ introducing new graduate courses and on the intersection of 

learning and control.

Algorithm
● We previously developed a 

registration algorithm 
named PASTA [1] (Provably 
Accurate Simple 
Transformation Alignment).

● It is fast and comes with 
worst-case guarantees.

[1] M. Marchi, J. Bunton, B. Gharesifard, P. Tabuada. "LiDAR Point Cloud Registration 
with Formal Guarantees." IEEE 61st Conference on Decision and Control. 2022.
[2] M. Marchi, J. Bunton, Y. Gas, B. Gharesifard, P. Tabuada. “Sharp Performance 
Bounds for Pasta”. IEEE Control Systems Letters. 2023.

Formal Guarantees
● While we already proved 

that PASTA enjoys formal 
deterministic error 
bounds, any 
improvement in the 
tightness is very important 
in practice.

● In [2] we massively 
tightened the provable 
bound, resulting in the 
theorem to the right (𝛅 
describes the overlap of 
the two point clouds).

● The new bound scales 
substantially better with 
the overlap, especially in 
the regime of high 𝛅 (low 
1-𝛅 in the plot to the right).

Theorem: Given an environment size 𝞺 
and overlap 𝛅, the error between 
PASTA’s estimate and the true 
transformation is bounded:

● We align pairs of point 
clouds collected a 
“lag” number of 
samples apart with 
PASTA, and calculate 
the resulting error 
bound for different 
lags.

● Greater lag means 
lower overlap δ 
between the point 
clouds. The bound 
degrades gracefully 
as lag increases.

● A robot moves in an 
environment with 
multiple obstacles 
while recording 
point clouds with a 
2D LiDAR.

● We verify our improved theoretical bounds experimentally.
Error Bounds in Practice

● PASTA and its bound 
act as a supervisor 
for the neural network.

● The neural network 
has good average 
performance, but 
sometimes behaves 
poorly. The PASTA 
supervisor bounds 
the network’s 
output, maintaining a 
limited worst-case 
error.

PASTA Supervised Neural Network
● We train a neural network to perform localization using point clouds 

as input, and test it on the trajectory data we collected.


