Learning-Enabled Assistive Driving (LEAD): Formal Assurances during Operation and Training

Panagiotis Tsiotras (PI, Georgia Tech), Samuel Coogan (Georgia Tech), Matthew Gombolay (Georgia Tech)

https://dcsl.gatech.edu/research/lead.html

Objective: Make learning-enabled assistive driving technologies safer and align their decisions with human-driver; exhibit "natural" behaviors by autonomous machines that are acceptable, safe, and understandable by humans; quantify impact of human driver within the autonomy loop, both from an individual experiential perspective, as well as in terms of safety.

Motivation/Challenges:

- Misalignment of learning agent's goals with human driver can lead to unsafe interactions
- There is a need to increase the robustness of learning-based approaches without sacrificing safety

Impact on Society

- Safer ADAS and self-driving vehicles
- Better ADAS will decrease the 40,000 annual casualties from traffic accidents

Dynamics and Control Systems Laboratory

Scientific Impact:

- lacksquareduring training and execution

Education and Outreach

More than 120 undergraduate students via a Vertically Integrated Project Team (VIP)

Industry collaboration and technology transfer

Develop "personalized," safe, and trustworthy autonomous systems Fundamental contributions to safe operation of deep learning architectures

Broader Impacts

Trustworthy, "personalized," safe autonomous systems in human-machine collaborative settings

