Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-**Physical-Human Systems**

Prof. Kyriakos G. Vamvoudakis (<u>kyriakos@gatech.edu</u>, http://kyriakos.ae.gatech.edu) Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology Prof. Zhong-Ping Jiang (zjiang@nyu.edu, https://engineering.nyu.edu/faculty/zhong-ping-jiang) Tandon School of Engineering, New York University

1. Learning-based Automated Lane Changing Control in Mixed Traffic

- A learning-based optimal control method employing adaptive dynamic programming (ADP) to create a near-optimal lane-changing controller using real-time input-state data of autonomous vehicles (AV).
- Treats AV dynamics as a linear parameter-varying system, using gain scheduling combined with ADP techniques to generate a learning-based
- A data-driven decision algorithm for safe lane changes, validated through MATLAB and SUMO simulations.

2. Experimental Study for Learning-Based **Automated Lane Changing Control**

• Developed a cost-effective, time-efficient safe, and learning-based control policy lane-changing, for AV leveraging real-time sensor Camera data processed by an NVIDIA Jetson board, proven in lab tests with future aims for real-world trials.

3. Data-driven optimal control of connected vehicles in mixed traffic

- Disturbance attenuation: minimizing max $x^T Qx + u^T Ru dt - \gamma w^T w dt$
- A "reduced" system for the stabilizability on a ring road.
- Policy iteration for stabilization and L_p string stability
- Value iteration for disturbance attenuation.

Challenges:

- Emergence of heterogeneous cyber-physical-human systems
- Learning optimal controllers for trajectory tracking and disturbance Classification rejection in face of cyber attacks.
- RL decision making mechanisms:
 - Self-adaptation Self-healing Self-optimization
- Sabotage of vehicle's RL governed control systems leads to;
 - Traffic jams, pollution, and accidents
 - Ripple effect that can cause financial losses.

Scientific impact

1.Model the intricate dynamics of human-AV interactions.

2.Use intermittent, robust reinforcement learning to reduce cyber attacks. 3.Simplify IoT redundancies through efficient reinforcement learning designs. 4. Create a new balance for safety, efficiency, and reliability in mixed traffic. 5. Develop instant, safe decision-making for autonomous agents with human integration.

Broader Impact

1.Boost trust in autonomous tech with ethical, safe human-machine interactions. 2.Apply autonomous tech in cities and healthcare to cut pollution and protect health. 3.Create interdisciplinary courses on efficient, costeffective autonomous systems and gather student feedback.

4. Adversarial Motion Planning using Gaussian Process

- Proposed Adversarial RRT-QX, a motion planning algorithm to allow a multi-agent environment while player agent to navigate a simultaneously identifying and avoiding potential adversaries attempting to intercept it.
- The algorithm additionally includes ways to identify non-adversarial independent agents to avoid unnecessary replanning or the freezing robot problem

5. Online Fixed-Time Reinforcement Learning for Safety Verification using Reachability Analysis

- A safety-critical control problem is addressed using reachability analysis and design a reinforcement learning-based mechanism for learning online and in fixed-time the solution to the safety-critical control problem.
- Safety is ensured by determining a set of states for which there does not exist an admissible control law generating a system trajectory reaching a set of forbidden states at a user-prescribed time instant.

6. Online Vehicle-Following Projection Mechanism Using **Reinforcement Learning**

- Ease of implementation in a digital environment such as microprocessors.
- Ability to utilize measurements of the process without incorporating any explicit dynamical information in the underlying strategy.
- Capability to solve model-following problems with high-order error dynamics using feasible adaptive strategies.
- Enabling simultaneous multi-objective optimization of the modelfollowing and strategy adaptation performances.

7. Verification of Adversarially Robust Reinforcement **Learning Mechanisms in Aerospace Systems**

- This work integrates an RL algorithms to solve optimal control problems, an adversarial mitigation mechanism, a moving target defense framework, and a VerifAI toolkit.
- Then, we provide a testing framework to verify the robustness of closedloop RL mechanisms.
- The verification test-bed framework is applied to an X-plane 11 Cessna 172 to successfully evaluate and verify the reliability of off-policy RL.

