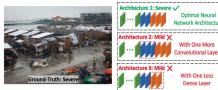
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using **Human-Centric Sensing**

Dong Wang, School of Information Sciences, University of Illinois Urbana-Champaign

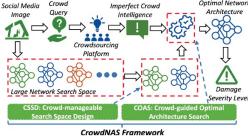

https://www.wangdong.org/sslab/index.html

Project Overview: Create a new Data-driven Crowdsensing-based CPS (C-CPS) Design and Implementation (DCCDI) framework to address the data reliability, crowd rationality and optimized sensor steering challenges in building reliable and optimized CPS using humans as sensors.

Challenge:

- Data Reliability
- Crowd Rationality
- Closed-loop Crowdsensing based-CPS (C-CPS) Design

Solution:



nvolutional Layer

The above figure shows the DDA results from three deep neural network architectures with only one layer difference in neural network architectures. In particular, Architecture 2 has only one more convolutional layer compared to Architecture 1. Architecture 3 has only one less dense layer compared to Architecture 1.

Broader Impacts:

 Contribute to a powerful C-CPS paradigm that can transform many aspects of our society (e.g., disaster damage assessment, smart urban sensing, environment, transportation).

Integrate the research with the course "Social Sensing and Human-Cyber-Physical Systems" at UIUC

Our Model

Train undergraduate and graduate students at UIUC

InceptionNet	0.6709	0.4492	0.4692 0.6211	0.3403	0.3604	0.6521	0.4018	0.4186		DenseNet	0.6743	0.9441	1.2261	0.1252	0.1255	0.1255
DenseNet	0.6707	0.4644	0.4682 0.6645	0.4355	0.4425	0.6894	0.4805	0.4808		VGG	0.6240	0.8850	1.1346	0.0218	0.0219	0.0218
VGG	0.6708	0.4407	0.4656 0.6335	0.3382	0.4022	0.6211	0.3252	0.3883		CrowdLearn	0.6171	0.8415	1.1221	0.0230	0.0231	0.0214
CrowdLearn	0.6460	0.4046	0.4170 0.6024	0.2995	0.3223	0.5590	0.2318	0.2466		Deep Active	0.6093	0.8349	1.1283	0.0217	0.0216	0.0215
Deep Active	0.6459	0.4226	0.4268 0.7018	0.5063	0.5079	0.6956	0.4856	0.4892		Hybrid Para	0.7040	0.9963	1.3284	0.0240	0.0223	0.0210
Hybrid Para	0.6956	0.4752	0.4788 0.6770	0.4428	0.4457	0.6521	0.4010	0.4058		NASNetMobile	0.7199	0.9641	1.2855	0.1162	0.1175	0.1201
NASNetLarge	0.6211	0.3661	0.3948 0.6273	0.3524	0.3956	0.6397	0.3734	0.4251		NASNetLarge	0.7222	0.9948	1.3628	0.1780	0.1699	0.1782
NASNetMobile	0.6149	0.3422	0.4095 0.6086	0.3161	0.3677	0.6521	0.3909	0.4434		DARTS	0.1573	0.2225	0.2967	0.0099	0.0100	0.0101
DARTS	0.4596	0.1644	0.1750 0.5403	0.1873	0.2014	0.5155	0.1994	0.2057		ProxylessNAS	1.0789	1.1366	1.1554	0.0122	0.0121	0.0126
ProxylessNAS	0.6583	0.3948	0.4338 0.6583	0.3900	0.4333	0.6708	0.4193	0.4560		UnNAS	0.8428	0.8571	0.9050	0.0144	0.0148	0.0149
UnNAS	0.5403	0.2009	0.2271 0.5031	0.0961	0.1394	0.5652	0.2419	0.2711		CrowdNAS	0.0215	0.0217	0.0220	0.0213	0.0214	0.0217
CrowdNAS	0.7142	0.5149	0.5197 0.7329	0.5375	0.5412	0.7515	0.5654	0.5723	-	CIONULATIS	0.0215	0.0617	0.0520	0.0615	0.0214	0.0517

· Yang Zhang, Lanyu Shang, Ruohan Zong,, Ziyi Kou, Lanyu Shang, Dong Wang. CrowdNAS: A Crowd-guided Neural Architecture Searching Approach to Disaster Damage Assessment, The 25th ACM Conference On Computer-Supported Cooperative Work And Social Computing (CSCW 22), November, Virtual Conference, 2022.

> Organize ACM/IEEE ASONAM 23 in CISE research community.

Hagupit Dataset (seconds) - Varving Cro

1.0911 1.1487 1.1680

0.9198

 Distribute research results through publications in related venues.

Scientific Impact:

- Smart Urban Monitoring Disaster Damage Assessment Intelligent Tr • T h
- It can be further generalized and applied to other C-CPS domains (e.g., crowdsensing based anomaly detection, intelligent transportation, smart urban sensing)

The current C-CPS framework has been studied in a	
disaster damage assessment application	

Data Reliability in C-C

Hagupit Dataset (Varying Crowd Query Ratios) Table 7. Computational Time Comparisons on Typhoon Optimal Networ Architecture MCC F1-Score Training Time K-Score F1-Score K-Score MCC MCC $\alpha = 10\%$ $\alpha = 15\%$ $\alpha = 20\%$ $\alpha = 10\%$ $\alpha = 15\%$ $\alpha = 20$ 0.0519 0.3950 0.6561 0.9113 1.2151 0.050 AI Only Hybrid P ASNet1 NASNetM DARTS

Award ID#: CNS-1845639/2131622

