CAREER: Towards Non-Conservative Learning-Aided Robustness for Cyber-Physical Safety and Security

[2] T. Pati, S.Z. and Yong. "Robust Control Barrier Functions for Control Affine Systems with Time-Varying Parametric Uncertainties," IFAC-PapersOnLine'23.

Observer Synthesis", IEEE CDC'23.

Northeastern University

LVX VERITAS VIRTVS

PI: Sze Zheng Yong, Mechanical and Industrial Engineering, Northeastern University (previously at Arizona State University)

[5] M. Khajenejad et al. "Resilient State Estimation for Nonlinear Discrete-Time Systems via Input and State Interval

M	eth	od	s a	nd	Re
<i>x</i> =	=f(x)) + g	(x)u	\Rightarrow	● h(● f (• ĥ(x
Ass	umptic	on			
The	functio	n <i>h</i> : 2	$\mathcal{X} imes \mathcal{U}$	$ ightarrow \mathbb{R}$ i	S
0	globally	y Lipso	chitz c	ontinu	ous,
0	globally	y comp	oonent	wise L	ipsch
-	differer	itiable	w.r.t.	x and	<i>u</i> w
0	$\dot{h} \geq \dot{h}_i$	$-L_{x}$	$x - x_i$	$ _{p} - L$	_u u -
0	$\dot{h} \geq \dot{h}_i$	$-L_x^\top$	$ x - x_i $	$-L_u^{\top}$	<i>u</i> –
0	$h \ge h_i$ where	$+ \underline{J}_{x} \Delta x_{i} \triangleq$	$x_i^+ - x_i^+ - x_i^+$	$J_X \Delta x_i^2$ and Δ	$\Delta u_i \stackrel{-}{=}$
Robust CBFs with Pa					
U	ncert	tain	ties	[2]:	
	×	(t) =	f(x(t), θ^*	(t))
•	State	e: x(<i>t</i>	$z)\in \lambda$	$\mathcal{E}\subseteq\mathbb{R}$	2 ⁿ , I
•	Unkr	nown	param	neter:	$\theta^*(a$
•	Unkr	nown	paran	neter	varia
M	ethod	•			
$\dot{h}(z)$	$x, u, \theta,$	$\dot{\theta}) \geq$	$-\alpha(i)$	h(x, heta)),
eq	uivaler	ntly,	$\min_{\forall heta, \dot{ heta}}$	$\dot{h}(x, \cdot)$	u, heta,
Mixed-Monotone Decomp					
• i	$f \underline{\theta} \le \theta$	$\theta \leq \overline{\theta}$	\Rightarrow	$f_d($	$(\underline{\theta}, \overline{\theta})$
Con	cave	Bour	nding		
• h	$\theta(x, u, \theta, \theta)$	$\dot{\theta}) \geq \dot{\theta}$	-lpha(h(x, heta)),	$\forall \epsilon$
Du	al LP:	$\dot{h}(x,$	$u, heta,\dot{ heta}$	$) + \alpha$	(h(x,
		$(\phi(x))$	$(x) + \rho($	$(x)u)^{\top}($	$\theta + \psi$
•	Dual:	$\inf_{\substack{\theta,\dot{\theta}}} (\phi$	v(x) +	$\rho(x)u$	$)^{ op} \theta +$
		s.t.	$P_{\theta}\theta \leq$	$\leq \pmb{q}_{ heta}, \pmb{F}$	$P_{\theta_d}\dot{\theta} \leq$
_	-h = 0	$\dots h_a($	$(x, v_l) - (x, v_l)$	$-h_{ m rCBF}(z)$	(x,v_l)
0.2					
$\begin{pmatrix} n \\ - \\ n \end{pmatrix} = 0$					
			· · · · · · · · · · · · · · · · · · ·		
-0.2	Lessesses 1 1				
-0.2					

Award ID#: 2313814

