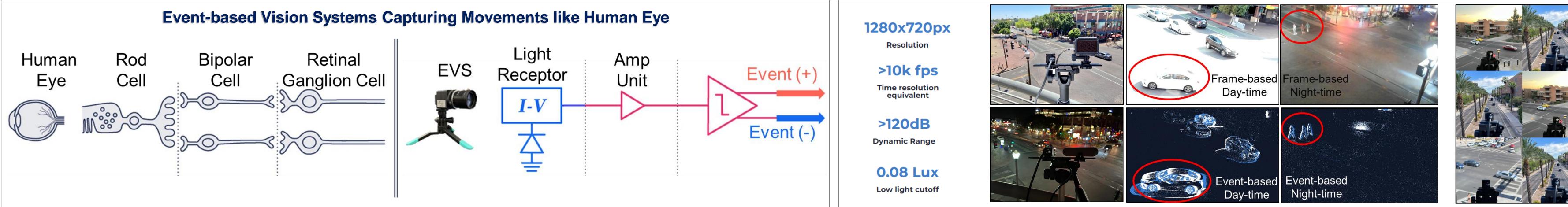
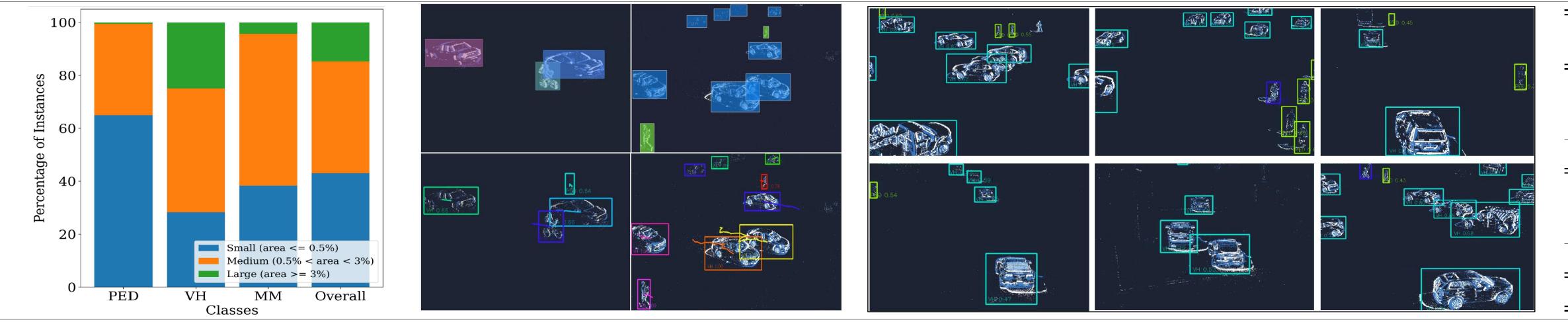
Collaborative Research: CPS: Medium: Spatio-Temporal Logics for Analyzing and Querying Perception Systems


Abstract


Development of formal languages for evaluating the quality & robustness of perception sub-systems within ADS & ADAS. A novel spatio-temporal logic enabling temporal & spatial reasoning about streaming perception data. Educational curricula to train engineers & engage the public in understanding ADS challenges. • Open-source software tools for testing perception systems & establishing standardized requirements languages.

Neuromorphic Vision Unveiling Spatio-Temporal Traffic Insights: Enhancing ADAS Perception in High Dynamic Scenes

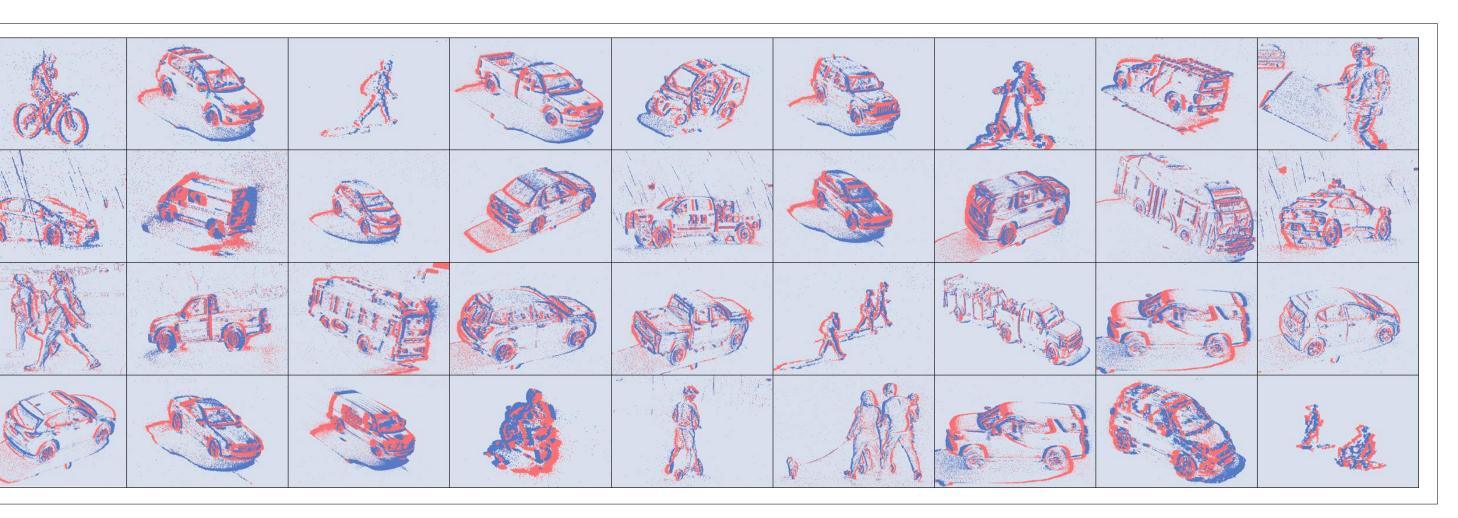
• Exploring the integration of neuromorphic vision systems with spatio-temporal reasoning for fixed traffic monitoring, leveraging event-based cameras' high temporal resolution & dynamic range

• *eTraM* - the first fully event-based fixed traffic monitoring dataset, providing comprehensive insights into real-world traffic dynamics featuring 2M annotations across 8 distinct traffic participant classes across a variety of scenes & lighting scenarios.

Broader Impact on Society - Who Will Care

- Policymakers, regulators, & automotive stakeholders will prioritize advancements in perception systems to enhance road safety & improve autonomous vehicle reliability.
- Improved ADS & ADAS technologies will offer enhanced mobility options for individuals with disabilities, contributing to societal inclusivity.
- Society will benefit from reduced accidents & fatalities on roads, leading to safer communities & improved quality of life.
- □ Manufacturers & suppliers will value perception systems that optimize the performance of autonomous vehicles

'YZ' Yezhou Yang, Arizona State University Jyotirmoy Vinay Deshmukh, University of Southern California


Broader Impact – Education & Outreach

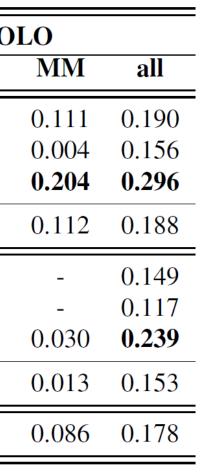
Engineering students will gain essential skills through education curricula focused on perception system development. Public awareness initiatives will highlight the importance of perc technologies in road safety & autonomous vehicle development. Summer internships for undergraduate women will promote diver encourage participation in autonomous vehicle research. Open-source datasets & software tools will facilitate collaborate

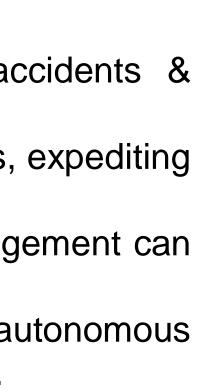
knowledge sharing among engineers & governmental agencies.

Award ID: 2038666

eTraM: Event-based Traffic Monitoring Dataset [CVPR 2024] Aayush Atul Verma, Bharatesh Chakravarthi, Arpitsinh Vaghela, Hua Wei, 'YZ' Yezhou Yang Arizona State University




Traffic Site	Lighting	RVT				RED				YO	
		PED	VH	MM	all	PED	VH	MM	all	PED	VH
Intersections Roadways Local Street	Daytime	0.460 0.430 0.196	0.813 0.733 0.938	0.315 0.070 0.586	0.722 0.627 0.316	0.395 0.347 0.208	0.593 0.590 0.875	0.284 0.055 0.695	0.545 0.551 0.351	0.167 0.173 0.124	0.293 0.290 0.559
Overall		0.304	0.781	0.403	0.572	0.302	0.656	0.251	0.497	0.142	0.309
Intersections Roadways Local Street	Nighttime	0.161 0.310 0.739	0.465 0.827 0.868	- - 0.097	0.262 0.739 0.829	0.149 0.362 0.722	0.425 0.782 0.831	- - 0.145	0.242 0.726 0.817	0.071 0.004 0.198	0.375 0.229 0.486
Overall		0.317	0.674	0.064	0.523	0.303	0.660	0.083	0.504	0.123	0.322
Overall		0.309	0.717	0.313	0.539	0.303	0.649	0.197	0.491	0.134	0.314


	Potential Impact								
cational	Enhanced perception systems can significantly reduce ac fatalities, leading to human life & economic savings.								
rception	 Formal languages & metrics can streamline testing processes, the deployment of safer autonomous vehicles. 								
ersity &	Integration of neuromorphic vision technology in traffic managements mitigate congestion, improving transportation efficiency.								
ation &	Inclusion initiatives can foster innovation & diversity in au vehicle technology, benefiting society & advancing technology.								

