CAREER: Towards Optimized Operation of Cost-Constrained

Complex Cyber-Physical-Human Systems

Daphney – Stavroula Zois (PI)¹, James Boswell (Senior Personnel)²

¹Electrical and Computer Engineering Department, ²Psychology Department

University at Albany, SUNY

{dzois, jboswell}@albany.edu

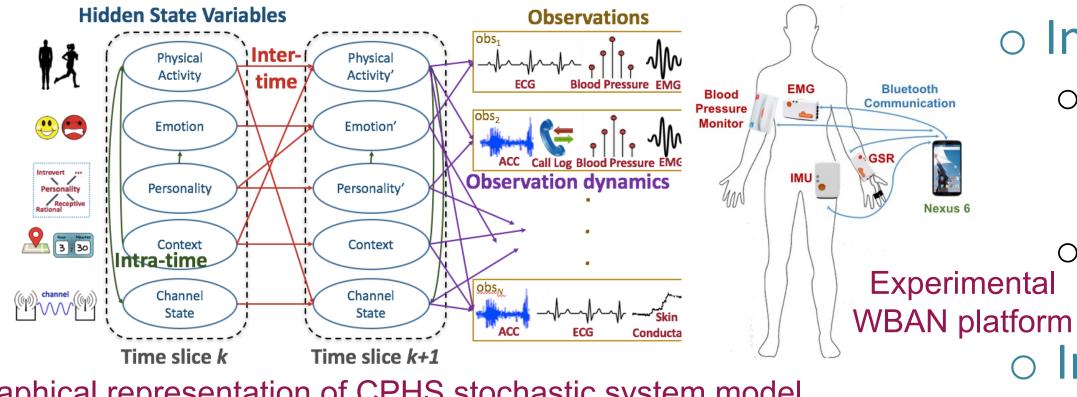
https://www.albany.edu/~dz973423/projects/nsf-career-2020/index.html

Vision:

Systematically describe cost—constrained complex cyber—physical—human systems and optimize their operation

Cyber-Physical-Human Systems (CPHS) Challenges:

- Sensing, processing & transmitting data under resource constraints (e.g., energy, time)
- Fuse heterogeneous data (in terms of fidelity, informativeness and cost) to satisfy application requirements
- State-dependent communication and prone to sensing errors
- Dynamics and cyber variables are intertwined with/altered by human behavior


Accurate and Scalable Estimation and Control for CPHS is hard!

Scientific Impact:

- o More realistic stochastic dynamic models and representation of interactions for complex CPS
- Dynamic fine—grained state estimation strategies for complex CPS
- o Fundamental limits of dynamic fine-grained state estimation for complex CPS
- Formally integrate impact of humans-in-the-loop
- o Control strategies for optimizing CPS operation with complex dynamics and heterogeneous capabilities

Solution:

- Instance-wise Feature Acquisition in Multi-view Settings
- Different sensors (e.g., IMU,ECG) produce multiple distinct data
- Prediction of class of data instance (e.g., physical activity) can be improved by acquiring the most "useful" features extracted from such data
- Improvement both in accuracy and energy efficiency
- ``Easy'' data instances are classified using very few features/views

Graphical representation of CPHS stochastic system model

- Instance-wise Classifier/Ensemble Selection
 - If acquiring additional features does not improve accuracy, instance-wise selection of one or more classifiers improves performance w/o additional cost
 - "Difficult" data instances are classified using this mechanism
- Instance-wise Feature Acquisition is interpretable

Impact on Society:

- Societal impact
- Help engineers optimize CPS/CPHS operation
- Enable scientists to objectively study human behaviors
- Provide individuals with means to self-monitor and improve their behavior
- O Who will care/benefit from project outcomes?
 - CPS/CPHS engineers and system designers
 - Scientists in medicine, education, and psychology
 - General public

Education and Outreach:

- Training of undergraduate/graduate students in both theory and practice of CPHS
 - Freshmen worked on K-12 hands-on projects (e.g., touch sensor, muscle sensor) and presentation materials that illustrate basic sensing principles
 - PhD students trained on machine learning for enhancing CPHS operation

Broader Impact:

- Unveil important factors related to CPHS operation
 - Identify key variables that affect CPHS operation
 - Uncover fundamental limits of estimation process
 - Understand inherent trade-offs in optimization of CPHS processes
- Estimation and control methods for CPHS
- CPHS Education/Outreach

