Data-Driven Controller Synthesis via Finite Abstractions

Majid Zamani, Computer Science Department, University of Colorado Boulder

Continuous-Time Control Systems (ct-CS)

Consider a perturbed ct-CS
$$\Sigma$$
 represented via $\Sigma = (X, U, f, \Lambda)$, where

- $\blacktriangleright X \subseteq \mathbb{R}^n$ is the state set and $U \subseteq \mathbb{R}^m$ is the input set;
- ▶ $f : X \times U \rightarrow X$ is the vector field;
- $\blacktriangleright \Lambda = [-\bar{\lambda}, \bar{\lambda}] \subseteq \mathbb{R}^n$ is the disturbance set;

The state evolution of Σ is described by

$$\dot{x}(t) = f(x(t), \nu(t)) + \lambda(t)$$

with $\lambda(t) \in \Lambda$.

 $\xi_{x,u,\lambda}(\tau)$ denotes the state of Σ reached at time τ from initial state x under constant input $u \in U$ and disturbance $\lambda : [0, \tau] \to \Lambda$.

Over-Approximating Reachable Sets

Given a ct-CS Σ , and $\widehat{X} := [X]_{\eta_x}$, $\widehat{U} := [U]_{\eta_u}$ as symbolic state and input sets of Σ , a function $\chi:\mathbb{R}^n_{>0} imes \widehat{X} imes \widehat{U} o\mathbb{R}^n_{>0}$ satisfying

Data-Driven Finite Abstraction

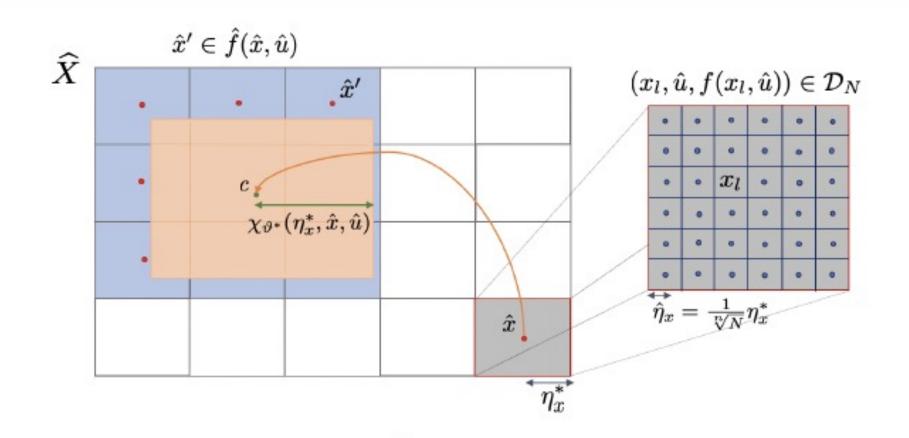


Figure: A 2-dimensional depiction of a finite abstraction, constructed using Algorithm 1.

Main Result

Theorem 2: Proposed growth bound χ_{ϑ} **is sound**

Consider a ct-CS Σ with a sampling time τ . For any $\hat{x} \in [X]_{\eta_x}$ and $\hat{u} \in [U]_{\eta_u}$, suppose $[\Phi_{\eta_x}(\hat{x})]_{\hat{\eta}_x}$ is a finite partition of $\Phi_{\eta_x}(\hat{x})$ where $\hat{\eta}_x := \frac{1}{\sqrt[p]{N}} \eta_x$. Then, the solution of SCP using the data from $[\Phi_{\eta_x}(\hat{x})]_{\hat{\eta}_x}$ provides a growth bound χ_{ϑ} corresponding to (\hat{x}, \hat{u}) where

 $|\xi_{x',\hat{u},\lambda_1}(\tau)-\xi_{\hat{x},\hat{u},\lambda_2}(\tau)|\leq \chi(|x'-\hat{x}|,\hat{x},\hat{u}),$

 $\forall \hat{x} \in \hat{X}, \ \forall \hat{u} \in \hat{U}, \ \forall x' \in \Phi_{\eta_x}(\hat{x})$, where $\Phi_{\eta_x}(\hat{x})$ is a ball centered at \hat{x} with the radius $\eta_x \in \mathbb{R}^n_{>0}$, $\forall \lambda_i : [0, \tau] \to \Lambda$, $i \in \{1, 2\}$, is called a growth bound of Σ .

Finite Abstractions

Given a ct-CS Σ and a growth bound χ , let Σ_{τ} be the sampled-data version of Σ with the sampling time au. Then $\widehat{\Sigma} = (\widehat{X}, \widehat{U}, \widehat{f})$ is a finite abstraction of Σ_{τ} , with the transition map $\hat{f}: \hat{X} \times \hat{U} \rightrightarrows \hat{X}$ if:

▶ for any $\hat{x}, \hat{x}' \in \widehat{X}$ and $\hat{u} \in \widehat{U}$, $(\xi_{\hat{x},\hat{u},\lambda}(\tau) \oplus [-p',p']) \cap \Phi_{\eta_x}(\hat{x}') \neq \emptyset \implies \hat{x}' \in \hat{f}(\hat{x},\hat{u}) \text{ where }$ $p' = \chi(\eta_x, \hat{x}, \hat{u})$ and $\lambda : [0, \tau] \to \Lambda$ is a disturbance signal.

Theorem 1: Feedback Refinement Relation

Consider a ct-CS Σ and its sampled-data version Σ_{τ} . Let $\widehat{\Sigma} = (\widehat{X}, \widehat{U}, \widehat{f})$ be a finite abstraction of Σ_{τ} . Then, $\Sigma_{\tau} \propto_{\mathcal{E}} \Sigma$, i.e., the relation \mathcal{E} defined as $(x, \hat{x}) \in \mathcal{E}$ if $x \in \Phi_{\eta_x}(\hat{x})$ is a feedback refinement relation from Σ_{τ} to Σ .

We collect data from Σ 's trajectories in one sampling time, which are collected in $\mathcal{D}_N := \{ (x_l, u_l, x_l') \mid x_l' = \xi_{x_l, u_l, \lambda_l}(\tau), \text{ for some } \lambda_l : [0, \tau] \to \Lambda, x_l \in X, \}$ $u_{l} \in U, l = 1, 2, \dots, N$.

Problem Statement

Consider a ct-CS Σ with an unknown vector field f. Develop a data-driven approach based on the set of data \mathcal{D}_N for constructing a finite abstraction Σ , such that $\Sigma_{\tau} \propto_{\mathcal{E}} \Sigma$ with a set membership relation \mathcal{E} .

 $\varrho := 4(\mathcal{L}_{\mathsf{x}}(\hat{u})\hat{\eta}_{\mathsf{x}} + \mathcal{L}_{\mathsf{A}}(\hat{u})\bar{\lambda}),$

 $\mathcal{L}_{x}(\hat{u})$ and $\mathcal{L}_{\Lambda}(\hat{u})$ are some Lipschitz constants.

Algorithm

- \blacktriangleright Input: $X, U, \overline{\lambda}, \eta_u$ and η_x
- \blacktriangleright Construct $\hat{X} = [X]_{\eta_x}$ and $\hat{U} = [U]_{\eta_y}$
- For each $(\hat{x}, \hat{u}) \in \widehat{X} \times \widehat{U}$ do:
- lnitiate $\hat{f}(\hat{x}, \hat{u}) = \emptyset$, $\rho = \mathbf{0} \in \mathbb{R}^n$ and $c = \xi_{\hat{x}, \hat{u}, \lambda}(\tau)$ for some $\lambda : [0, \tau] \to \Lambda$
- ▶ Compute $\varrho \in \mathbb{R}_{\geq 0}^{n}$ as in Theorem 2
- As outlined in Theorem 2, generate $[\Phi_{\eta_x}(\hat{x})]_{\hat{\eta}_x}$ and select N sampled data points (x_I, \hat{u}, x_I') from it.
- > Obtain the optimal value $\vartheta^*(\hat{x}, \hat{u})$ of the SCP
- Update: $\rho = \chi_{\vartheta^*}(\eta_x, \hat{x}, \hat{u})$
- $\blacktriangleright \hat{f}(\hat{x}, \hat{u}) = \{ \hat{x}' \in \widehat{X} \mid \Phi_{\eta^*}(\hat{x}') \cap \Phi_{\rho}(c) \neq \emptyset \} \cup \hat{f}(\hat{x}, \hat{u})$
- > Output: Data-driven finite Abstraction $\widehat{\Sigma} = (\widehat{X}, \widehat{U}, \widehat{f})$

Case Study

Vehicle model, assumed to be unknown, is as:

 $u_1 \cos{(q+x_3)}/\cos{(q)}$ $\dot{x}(t) = |u_1 \sin (q + x_3) / \cos (q)| + \lambda(t),$ $u_1 \tan(u_2)$

Data-Driven Construction of Finite Abstractions

Reachable set is over-approximated via proposed growth bound

 $\chi_{\vartheta}(\bar{s},\hat{x},\hat{u}) := \vartheta_1(\hat{x},\hat{u})(\bar{s} + \bar{\lambda}\tau),$ for any $\bar{s} \in \mathbb{R}^n_{>0}$, $\hat{x} \in \hat{X}$, $\hat{u} \in \hat{U}$, where $\vartheta_1 \in \mathbb{R}^{n \times n}_{>0}$, and $\vartheta \in \mathbb{R}^{n^2}_{>0}$ is a column vector by stacking those of ϑ_1 .

Computation of Growth Bound

The growth bound computation is formulated as a robust convex program (RCP):

 $\min_{\vartheta} \mathbf{1}^{\mathsf{T}} \vartheta$ s.t. $\vartheta \in [0, \overline{\vartheta}], \forall x_1, x_2 \in \Phi_{\eta_x}(\hat{x}), \forall \lambda_1, \lambda_2 : [0, \tau] \to \Lambda,$ $|\xi(x_1,\hat{u},\lambda_1)-\xi(x_2,\hat{u},\lambda_2)|-\vartheta_1(\hat{x},\hat{u})(|x_1-x_2|+\bar{\lambda}\tau)$ \leq 0,

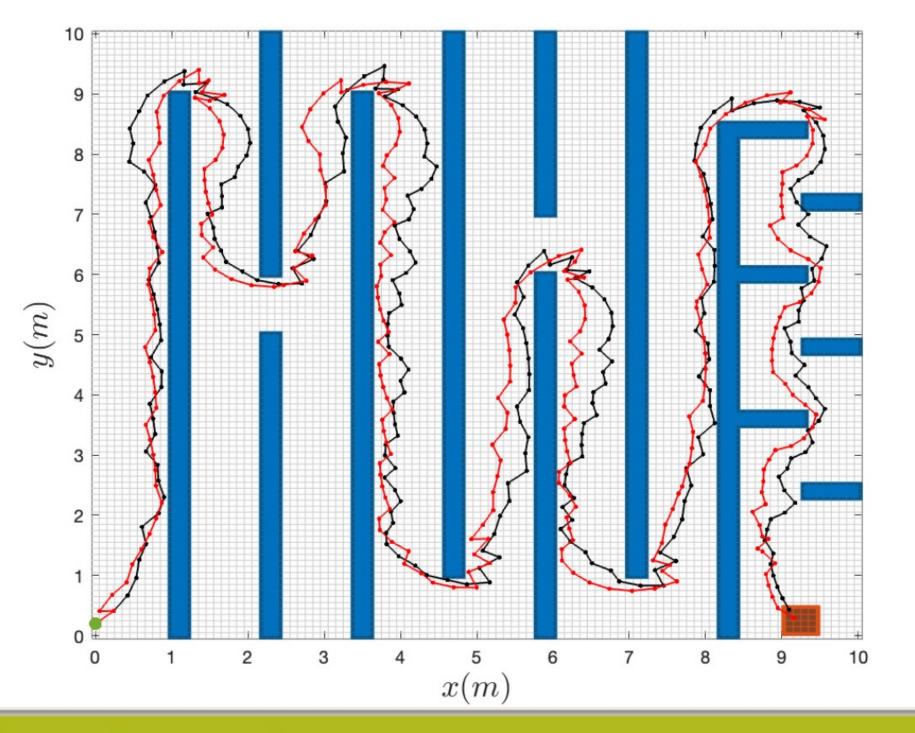
where $\mathbf{1} \in \mathbb{R}^{n^2}$ and $\bar{\vartheta} \in \mathbb{R}_{>0}^{n^2}$ is a sufficiently large vector component-wise.

Data-Driven Computation of Growth Bound

Since maps f is unknown, we use data set \mathcal{D}_N and propose a scenario convex program (SCP) corresponding to the original RCP:

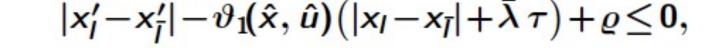
SCP:
$$\begin{cases} \min_{\vartheta} \quad \mathbf{1}^{\top} \vartheta \\ \mathbf{s.t.} \quad \vartheta \in [\mathbf{0}, \overline{\vartheta}], \forall I, \overline{I} \in \{1, \dots, N\}, \end{cases}$$

where $q := \arctan(\tan(u_2)/2)$, $\lambda : [0, \tau] \to \Lambda = [-\bar{\lambda}, \bar{\lambda}] \subset \mathbb{R}^3$ with $ar{\lambda} =$ [0.15; 0.15; 0.015], $x(t) \in$ [0, 10] $^2 imes$ [$-\pi - 0.3798, \pi + 0.3798$] and $u(t) \in [-1,1]^2$.

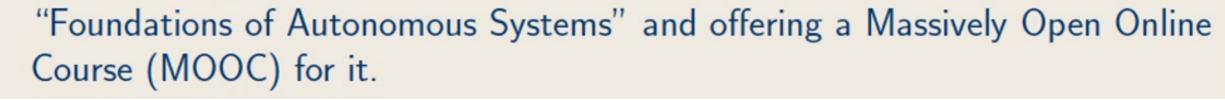


Education and outreach

- Partnering with the Engineering GoldShirt and ASPIRE Summer Bridge Programs at CU Boulder to recruit first-year, first generation, and underrepresented engineering students and engage them in the platform used in this project.
- Incorporating the performed research tasks into the course entitled



where $\varrho \in \mathbb{R}_{\geq 0}^{n}$ is a bias term given in Theorem 2.



CAREER: A Data-Driven Approach for Verification and Control of Cyber-Physical Systems

