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Key Challenges
1. How can we infer the structure of strategic 

cyber-physical interactions?
(uncertain rationality and hierarchy)

2. How and when can we design interaction 
structure to incentivize desired outcomes?
(beyond static, reactive mechanisms)

3. How can we design algorithms to cope with 
unstructured model uncertainty?
(beyond typical Gaussian assumptions)

Education and Outreach
• Expansion of existing course on 

game theory and multi-agent 
systems

• New undergraduate course on 
transportation modeling and 
policymaking

Award ID#: 2336840

Technical Approach

Scientific Impact
1. Theoretical framing which emphasizes the 

dynamic, time-varying nature of interactions as a 
first-class citizen.

2. Smooth, differentiable formulation of both 
inference and design problems to admit efficient 
solution methods.

3. Extension of computationally parallel 
scenario optimization approaches to cope with 
uncertainty in dynamic games. 
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Open-loop 
Nash

Broader Impacts
• New modeling tools for transit 

planners and regulators to guide 
policy decisions

• Reduced emissions, safer roads, 
more reliable air traffic 
management

• Extensions beyond transport, 
e.g., power distribution

incentive size}

agent
agent

agent
agent

Gaussian approximation 
 

 true distribution 
≉

pδKey enabler: 
second-order 
methods for 
solving feedback 
Nash games

Idea 1
Inference and design as 
smooth inverse games 

Idea 2
Sampled approximations 
to stochastic games can be 
solved in parallel

Uncertainty!

Unknown game 
parameters

CLeAR

π

Control and Learning for Autonomous Robotics

• Training REU students 
from UT and other MSIs


