Intelligent Resource Efficient Pond Aquaculture (IREPA): Cyber-Physical System to Improve the Fish Farms Productivity in the U.S.

PI: Bing Ouyang¹, Co-PIs: Paul Wills¹, Yufei Tang¹, Tsung-Chow Su¹ and James Garvey² 1. Florida Atlantic University; 2. Southern Illinois University

Challenges:

An alarming number: \$14 billion/yr. – US
trade deficit in seafood.
A dilemma: Limited advanced technology

Scientific Impact:

 Coastal zone environmental monitoring: Effective integration of remote sensing and in-situ sensors: HAUCS, Autonomous Underwater Vehicle-based or stationary

from a labor shortage.

A Key Bottleneck: Current water quality management practice is "reactionary" and inefficient.

in aquaculture while the industry suffers

sensors, and cubeSat.

 Unified CPS solution for diverse aquaculture settings: Extending IREPA to offshore and recirculation fish farms.

Solution:

- Leveraging <u>Hybrid Aerial Underwater RobotiC System</u> (HAUCS) project funded by NIFA via NRI 2.0 - Developing robotic DO monitoring systems for pond farms.
- **IREPA**: A proactive feedforward CPS framework:
 - Physics-Informed Data-Driven Farm Operation and Control (PID²-FOC) to support complex and diverse conditions on the fish farms.
 - Heterogeneous robotic systems to relieve the labor intensity of key operations on a pond fish farm.
 - High-bandwidth-low-latency network to accommodate farms with complex aquatic and terrestrial conditions.

The proposed IREPA framework

(a) HAUCS Conops (b) System in action (c) Sensing
 Platform Configuration (d) Data flows (e) Sensor
 data captured pond DO stratification.

- Address two essential issues in aquaculture: <u>labor shortage</u> and <u>high</u> <u>operational cost</u>.
- Engage with fish farmers
 - Logan Hollow Fish Farm (IL) will be integrated in development process.

Feedforward control of pond aquaculture farm through IREPA

physics-informed data-driven farm operation and control

- Developing the next-generation aquaculture workforce.
 - Developing Logan Hollow into an advanced technology demonstration site.
- Increasing participation of under-represented students
 - Leveraging the robust programs to support under-represented minorities (URMs) at FAU and SIU – FAU is a Hispanic Serving Institute.

	Traditional	State of the Art	HAUCS	IREPA
Water Qual	ity Manual	Pond Buoy + Data Drive ML	Mobile Robotic Sensing +	Enhanced Mobile Robotic Sensing+
Monitorin	g	Model	Data Drive ML Model	Physics-Informed ML Model
Agration	Manual	Automated Fixed aerator	Prediction-informed	Automated Fixed Aerator + Swarm
Aeration	Ividitudi		manual operation	Robotic Mobile Aerators
Fooding	Manual	Fixed Feeding Station +	Manual	Robotic Mobile Feeding System +
reeding	Ividitudi	Biomass Tracking		Biomass Tracking
Harvesting and Fish		Prediction-informed manual	Manual	Prodiction informed manual operation
Selection	wanuar	operation (*circulation tank)	Mariual	Prediction-informed manual operation

