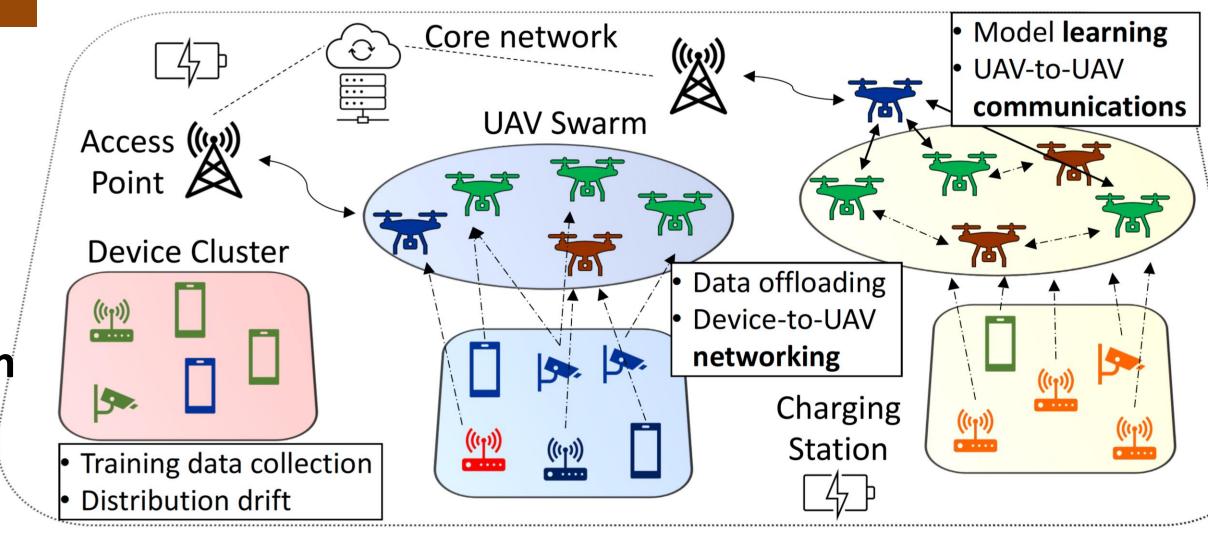
Learning through the Air: Cross-Layer UAV Orchestration for Online Federated Optimization

Abolfazl Hashemi and Chris Brinton (Purdue University), Cong Shen (University of Virginia) https://sites.google.com/view/nsf-ccpls


Challenge:

How can we ensure the effective operation of Collaborative Cyber-Physical Learning Systems (CCPLSs) despite the challenges posed by large-scale, high-dimensional, heterogeneous, and dynamically evolving datasets?

Solution 1: Communication, Resource and Training Efficient FL

Key Problem: How to make FL systems efficient for real-world deployments?

- **Autoencoder-Based AirComp for Wireless FL**
 - Bridges the gap between modern wireless digital systems and analog AirComp
 - Proposes an autoencoder-based digital modulation for FL aggregation
 - Results in accurate sum signal decoding
- * Hierarchical Independent Submodel Training (HIST) for FL
 - Addresses issues regarding computation,
 communication and storage in HFL systems
 - Partitions global models into disjoint submodels, reducing per-device training cost
- **SD-GT:** Semi-Decentralized FL with Gradient Correction
 - Solves statistical heterogeneity problem across devices
 - Introduces gradient correction to resolve intra and inter cluster heterogeneity
- **GCN-Optimized Device Sampling**
 - Uses Graph Neural Networks (GCN) to optimize device selection and D2D offloading
 - Device sampling must consider D2D offloading opportunities

Solution 3: Fairness & Personalization in FL

Key Problem: How to ensure fairness and personalization in FL models?

- ***** Equitable FL via Activation Clustering:
 - Utilizes activation vectors to ensure fair treatment across client clusters
 - Ensures group fairness by **reducing variance** in test accuracy across clients
- ***** FedACS (Attention-Based Client Selection):
 - Addresses model personalization under non-IID data distribution
 - Dynamically **prioritizes important clients** to enhance training

Key Problem: Designing optimization methods with improved convergence guarantees and theoretical robustness? **❖ FESS-GDA**:

Solution 2: Advances in Optimization and Convergence Analysis

- Federated minimax optimization method using stochastic smoothed gradient descent ascent
- Achieves better sample and communication complexity compared to existing methods
- Primal-Dual Optimization(PPALA):
 - Developed an efficient primal-dual method to find approximate stationary solutions with performance guarantees
 - Ensures solutions satisfy ∈-KKT conditions, improving optimization efficiency for constrained non-convex problems

Broader Impact:

- Development of UAV-assisted CCPLS for a variety of application domains, manufacturing of UAVs and other unmanned vehicles tailored for CCPLS
- Research dissemination and curriculum development:

 Develop new course modules for the courses taught by the Pls, e.g., Optimization for DL, Wireless Communications,

 Communication Networks. A postdoc supported by this project started as a faculty in August 2024
- Outreach and community engagement: Advising VIP team working on multirobot teams, an instance of CCPLS

Scientific Impact:

Immediate application in smart and connected agriculture in remote areas, but theory, algorithms, and foundation broadly applicable. Advances in optimization algorithms ensure stable, scalable, and theoretically grounded solutions for FL.

