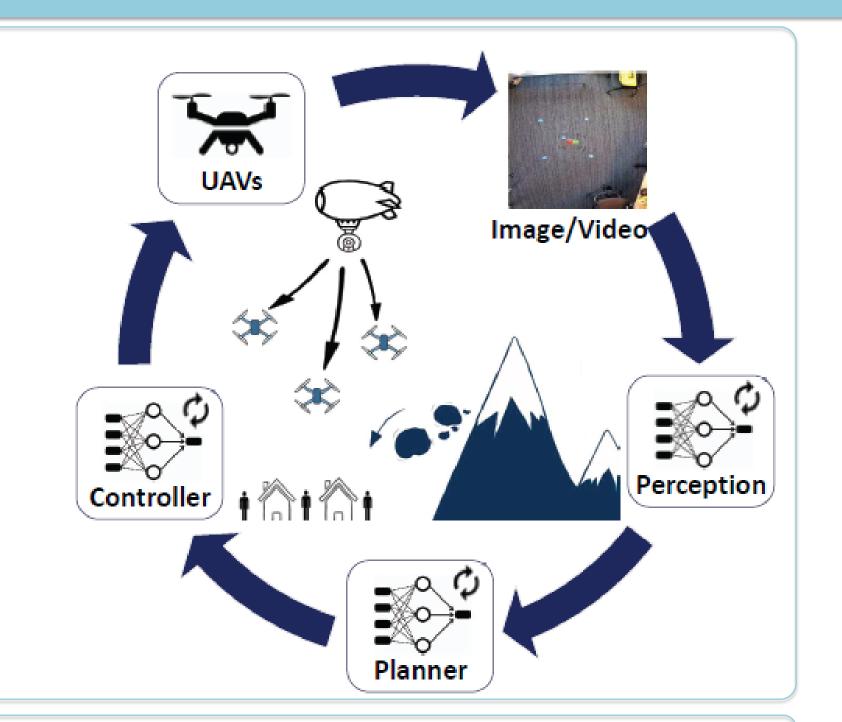
CAREER: Enabling Trustworthy Upgrades of Machine-Learning Intensive Cyber-Physical Systems

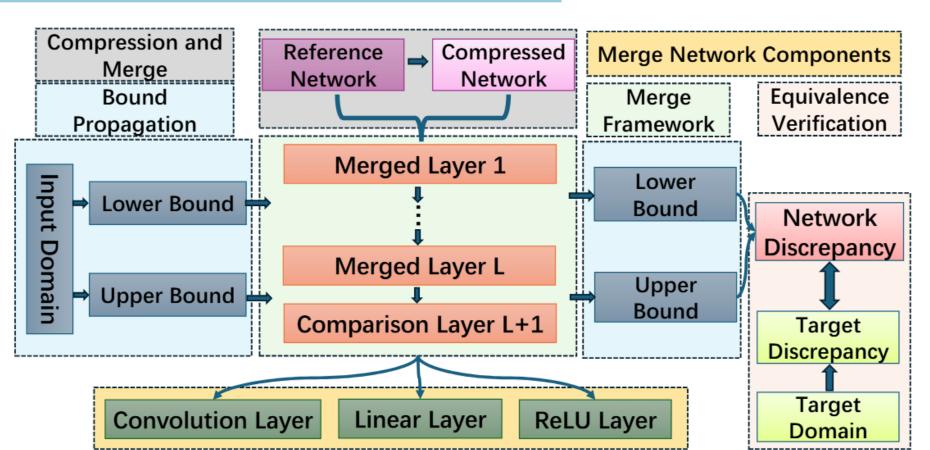
Weiming Xiang, School of Computer and Cyber Sciences, Augusta University https://www.nsf.gov/awardsearch/showAward?AWD_ID=2143351

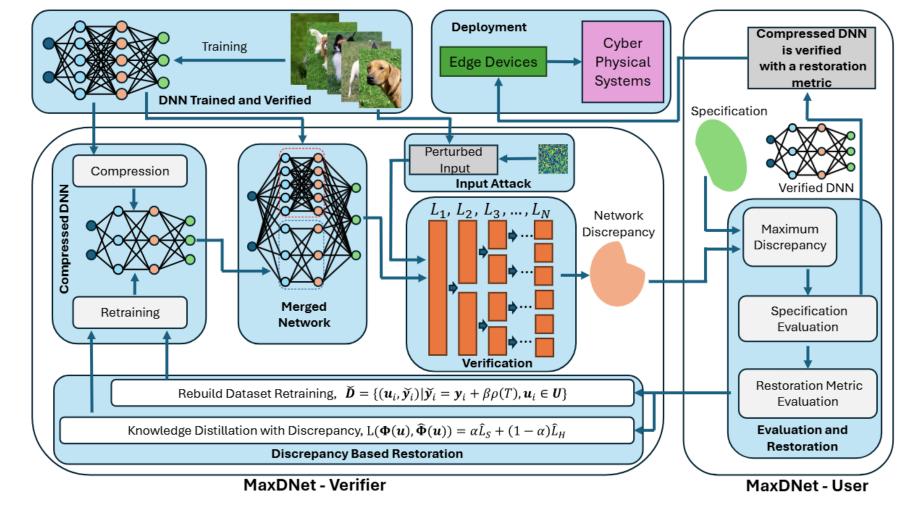


Goal: Develop verification and upgrade procedures to provide formal safety guarantees for ML-intensive CPS throughout life cycles.

Challenges

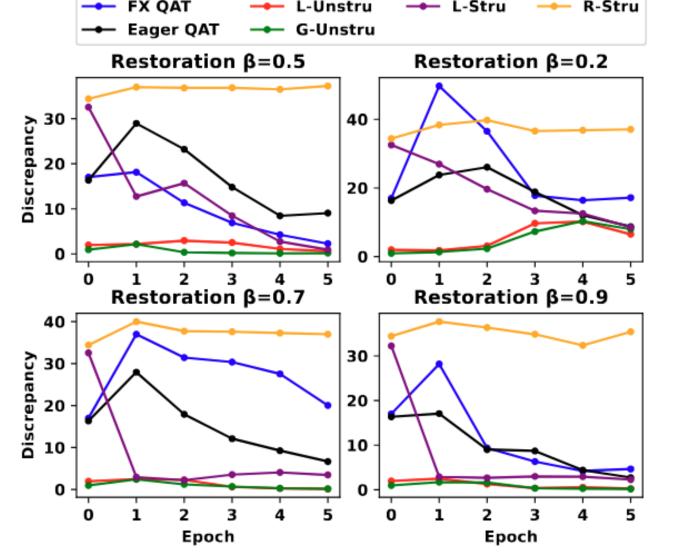
- **Vulnerabilities of ML Components** How to fully identify the incompatibilities caused by the ML upgrade, and formally verify upgrades of ML-intensive CPS?
- **Unique Upgrade Procedures of ML** Components

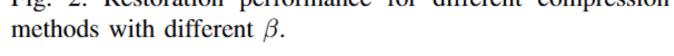

How to develop safety-assured ML upgrade for ML-intensive CPS?


Scientific Impacts

- Safe Upgraded Model: Safety Verification and Monitoring of ML-Intensive CPS Upgrades
- Safe Upgrade Procedure: Safety-Assured Upgrades for ML-Intensive **CPS**
- Safe Upgrade Application: Safe Upgradable ML-Intensive Autonomy

Project Progress


EqBaB: Efficient Equivalence Verification for Compressed DNNs with Bound Propagation



MaxDNet: A Formal Framework for Verifying and Restoring Compressed Deep Neural Networks

Results

Performance restoration (MaxDNet)

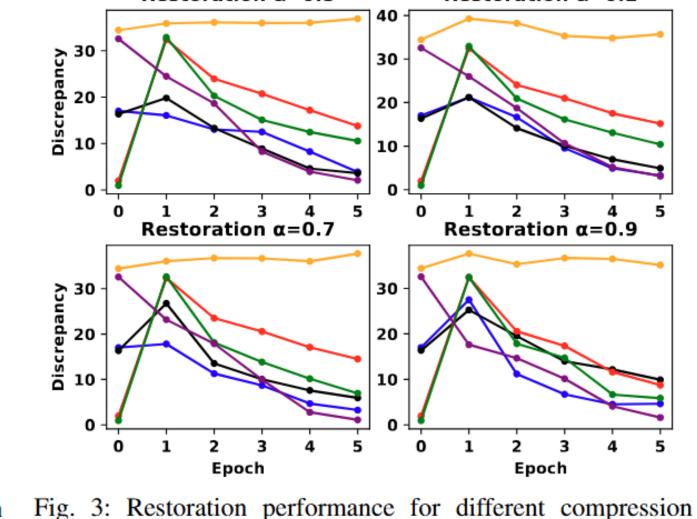


Fig. 2: Restoration performance for different compression

TABLE II: Retraining restoration performance

thods	Ori.	$\beta = 0.5$	$\beta = 0.2$	$\beta = 0.7$	$\beta = 0.9$
QAT	17.0159	2.2669	17.1840	20.054	4.6673
ger QAT	16.3547	9.0541	8.7409	6.6716	2.7320
Jnstru	1.9602	0.5915	6.4987	0.1254	0.2525
Jnstru	0.9487	0.1633	7.9780	0.1648	0.1836
Stru	32.5631	0.9242	8.5676	3.4599	2.2905
Stru	34.4265	37.2667	37.0809	37.0177	35.4302

TABLE III: Knowledge distillation restoration performance

Methods	Ori.	$\alpha = 0.5$	$\alpha = 0.2$	$\alpha = 0.7$	$\alpha = 0.9$
FX QAT	17.0159	3.8791	3.2217	3.2668	4.6501
Eager QAT	16.3547	3.6152	4.9157	5.9510	9.9261
L-Unstru	1.9602	13.7829	15.1636	14.5191	8.7380
G-Unstru	0.9487	10.5672	10.4162	6.9580	5.8600
L-Stru	32.5631	2.0776	3.1321	1.1076	1.6181
R_Stru	34 4265	36 9128	35 6922	37 7178	35 1513

Comparison (MaxDNet and EqBaB)

TABLE I: Comparison between reachability method and EqBaB on MNIST and CIFAR10

Dataset	Network 1		Network 2		Noise	Reachability		EqBaB		
	Model	Accuracy	Model	Accuracy	Noise	Discrepancy	Time	Discrepancy	Time	
	MNIST	FNN4	97%	FNN4	97%	3*3	4.3068	0.03s	4.2713	12s
MINIST	CNN4	90%	CNN4	89%	3*3	3.1278	0.03s	3.1229	20s	
	CIFAR10	VGG	75%	VGG	73%	2*1*3	18.6372	288s	18.6284	346s
CIFARIU	VGG	75%	VGG	73%	32*32*1	-	-	388.3810	3967s	

Broader Impacts

Impact to Society

The techniques and tools will benefit CPS and ML applications to provide lifetime safety assurance.

Education and Outreach

- CPS workforce training and education, one student won DoD scholarship.
- Develop a new CPS course at AU.
- Engage in K-12 outreach activities, GenCyber Camp, High School Spotlight Event, etc.

