
Going public with your CPS code and data

Tutorial, CPS-IoT Week 2025

1

Organizer:
Jonathan Sprinkle (Vanderbilt University)
Cathy Wu (MIT)
Riley Wagner (Vanderbilt University)
Katie Dey (Vanderbilt University)
Stephen Rees (Vanderbilt University)
Matt Bunting (Vanderbilt University)
Junyi Ji (Vanderbilt University)

May 2025
Irvine, CA

Session 1: Making your code do the talking
0900 - 0930 Introductions, the state of reproducibility
0930 - 1030 Code tutorial: make your code pretty and reusable
1030 - 1100 Coffee Break

Session 2: Creating an accessible and active resource
1100 - 1130 Demonstration of posting various types of resources with the CPS-VO
1130 - 1200 CPS open data sharing practice: I-24 MOTION testbed demonstration
1200 - 1230 CPS open data sharing practice: LADDMS demonstration

Tutorial agenda

Going public with your CPS code and data

Make your code pretty and reusable
Going public with your CPS code and data

Junyi Ji - Vanderbilt University

CPS-IoT Week 2025

Tutorial

3

Quick survey

Prerequisites: https://qtext.io/6sf0

4

https://qtext.io/6sf0

Reproducibility

▪ Reproducibility is obtaining consistent results using the
same input data, computational steps, methods, and
code, and conditions of analysis. This definition is
synonymous with “computational reproducibility.”

▪ Replicability is obtaining consistent results across studies
aimed at answering the same scientific question, each of
which has obtained its own data. Two studies may be
considered to have replicated if they obtain consistent
results given the level of uncertainty inherent in the
system under study.

Stodden, Victoria, et al. "Enhancing reproducibility for computational methods." Science 354.6317 (2016): 1240-1241.
National Academies of Sciences, et al. Reproducibility and replicability in science. National Academies Press, 2019. 5

Quick survey

Reproducibility levels

Peng, Roger D. "Reproducible research in computational science." Science 334.6060 (2011): 1226-1227. 6

Where we are?

Transformation in the publication pipeline

[Victoria Stodden on AI challenges in scientific discovery, https://youtu.be/oMUPoCWh_Q4, 2025] 7

1660’s:

1. Enough detail on equipment, materials, and procedures for reproducibility
2. “Communal witnessing”
3. Exhaustive details on experimental settings, false starts, failures, etc.

1900’s

Standards for journal publication: e.g. Introduction, Methods, Results, Discussion.

2025 and future

Executable workflows with links to corresponding data and results. Open accessibility.

The question is: Who is the reader?
How to measure the credibility of the results?

https://youtu.be/oMUPoCWh_Q4

Reproducibility - A closer look at empirical data

8
* Preliminary estimate. Could include use of open data or code from other projects, and exclude data or code
mentioned elsewhere.

Data availability*: 1.0% Code availability*: 3.1%

● Retrieved full-text data for 10,000+ papers (2019–2024) in TR journals

9

Is that our fault?
No!
The problem lies in the complexity
in the context of CPS.

Reproducibility in CPS

Yen, Alex, et al. "A UCSD view on replication and reproducibility for CPS & IoT." Proceedings of the Workshop on Benchmarking Cyber-Physical Systems and Internet of Things. 2021 10

UCSD view on RR for CPS & IoT - the
digital and physical components

Instruments with
software/hardware in the loop

A typical hardware work deck

Source: https://www.embedded.com/

My code before after this tutorial is like…

11

A small step further will bring in huge changes!

Philosophy: Get your feet wet with reproducibility

From start to finish, create a reproducible project on Github

To empower you to make your next research paper reproducible.

12

Session goals & learning objective

● Main goal: Create a project that someone can reproduce in less than
5 minutes.

● Stretch goal: Organize the project and make it understandable.

● Learn principles and practical tools for making your research project
reproducible. Including:
○ Fundamentals

■ Principles of organizing projects, code, & data
■ Working knowledge of Github

○ Advanced skills
■ Automatically extract the computing environment for reproducibility
■ VS Code and powerful extensions (tools for Jupyter, Markdown, csv, lint)

Prerequisites: https://qtext.io/6sf0

14

https://qtext.io/6sf0

Overview: Making your research project reproducible
▪ Key lesson: Don’t worry about making things perfect!

▪ Priorities for research code:
1. Make it run
2. Make it available
3. Make it pretty

▪ Available is better than perfect!

15

Outline

1. Make it run

2. Make it available

3. Make it pretty

16

Outline

1. Make it run

a. For you: an ITS example; handling randomness
b. For others, including future you: README, installation files

2. Make it available

3. Make it pretty

17

Make it run

18

▪ Exercise: Reproduce the car following simulation results

▪ Download project files: https://qtext.io/6sf0

▪ In 2 minutes, try to reproduce my plots. Go go go!
• Hint: simulator.py is the starting point.

▪ Fundamental diagrams generated from single lane traffic modeled
using the Intelligent Driver Model (IDM)

https://qtext.io/6sf0

By the way, if you get
stuck…
▪ Try ChatGPT for

resolving issues or
clarify instructions.

▪ This will allow you to
unblock yourself in the
future in your own
research project.

19

Fine, let me help you reproduce…
▪ $ conda create -n cps25-RR-tutorial

python=3.8
▪ $ conda activate cps25-RR-tutorial

▪ $ pip install matplotlib==3.1.0
▪ $ pip install pygame==2.6.0
▪ $ pip install pandas==2.0.3
▪ $ pip install numpy==1.24.4
▪ $ pip install jupyterlab==4.2.5

▪ $ python simulator.py --run-idm --no-render

20

That was a lot of steps though. Easier…
▪ $ conda env create -f environment.yml
▪ $ conda activate RR

▪ $ python simulator.py --run-idm --no-render

21

Get the same result each time you run the code
▪ Handle randomness
▪ Exercise: Reproduce the exact car following simulation results

• The project code we gave you will produce slightly different data and figures
each time you run it.

▪ Solution: Fix random seed in Python and libraries (add to any
simulator.py)
• import random
• import numpy as np
• random.seed(my_seed)
• np.random.seed(my_seed)

▪ Our reference example uses random seed 175175175

▪ Check that there are no changes to the data/figures when you re-run
simulator.py.

Further reading: https://www.kaggle.com/code/rtatman/reproducible-research-best-practices-jupytercon#Controlling-randomness

22

https://www.kaggle.com/code/rtatman/reproducible-research-best-practices-jupytercon#Controlling-randomness

Outline

1. Make it run

a. For you: an ITS example; handling randomness
b. For others, including future you: README, installation files

2. Make it available

3. Make it pretty

23

Make it run, next time

Your closest collaborator is you six months ago,

but you don’t reply to emails.

Credit: Karen Cranston (Twitter)

24

https://x.com/kcranstn/status/370914072511791104

Overall project README
▪ Exercise: Assemble a project

README.md

"Tips for Publishing Research Code," GitHub, 9 Sept. 2024, github.com/paperswithcode/releasing-research-code/tree/master.

Any setup
commands

Commands to
reproduce data

Commands to
reproduce plots

Paper
reference

25

Optional tips: Copy-paste a README template
▪ Go to https://github.com/paperswithcode/releasing-research-code/tree/master
▪ Within the templates folder, open README.md
▪ Select the Code tab
▪ From here you can copy and paste the template into your project, and adapt it to

your liking.
▪ Templates usually include more than what you need, so delete or adjust the

sections based on what others need to reproduce your work.

26

https://github.com/paperswithcode/releasing-research-code/tree/master

Optional tips: Editing a README.md in VS Code

Open Markdown preview

Side-by-side Markdown +
preview

27

Project setup files
▪ Exercise: Create installation files for the project

▪ Option 1: Extract environment info
• Often good enough for research
• User A: Programmatically extract the

environment information from the kernel
(e.g., anaconda Python)

• User B: Install environment information
in local system, then run code

▪ Option 2: Docker
• More advanced, but simpler for the user
• User A: Create a Docker image of your project
• User B: Run image in any environment (Windows, Linux,

MacOS, etc.)

28

Extract installation information

Python version

Packages based
on imports

All packages in
conda env

29

▪ Create a blank file environment.yml. This file maintains the
software dependencies for easy installation by others (& future
you).

Create a conda environment.yml file (1/3)

Further reading: https://conda.io/projects/conda/en/latest/user-guide/tasks/creating-projects.html

A short name for the conda environment
of your project (no spaces)

Python dependencies
Format: library_name==version_number

A user will install and activate the
environment by:
$ conda env create -f environment.yml
$ conda activate RR

30

https://conda.io/projects/conda/en/latest/user-guide/tasks/creating-projects.html

Create a conda environment.yml file (2/3)
Commands to extract the installation information:

▪ Get python version
• $ python --version

▪ Get module information
• $ pipreqs . --force --savepath requirements-imports.txt

▪ To install it: $ pip install pipreqs
• $ pip3 freeze > requirements-all-dependencies.txt

▪ pipreqs vs pip3 freeze
• pipreqs: Based on imports, excludes package dependencies
• pip3 freeze: Anything installed by pip in the current conda env, including

package dependencies

31

https://github.com/bndr/pipreqs

▪ Fill in the environment.yml with the extracted installation
information.

Create a conda environment.yml file (3/3)

Further reading: https://conda.io/projects/conda/en/latest/user-guide/tasks/creating-projects.html

Fill in from $ python --version. Some
platforms require excluding the patch
version (e.g. use 3.8 instead of 3.8.0).

Fill in from requirements-imports.txt.
Add whatever else you’d like to. For
example, add jupyterlab, to run more
code snippets.

32

https://conda.io/projects/conda/en/latest/user-guide/tasks/creating-projects.html

Outline

1. Make it run

2. Make it available

a. Open-source licenses
b. Get it on Github

3. Make it pretty

33

Code

“An article about computational science in a scientific
publication is not the scholarship itself, it is merely

advertising of the scholarship. The actual scholarship is the
complete software development environment and the

complete set of instructions which generated the figures.”

– Buckheit and Donoho, 1995

34

https://web.stanford.edu/dept/statistics/cgi-bin/donoho/wp-content/uploads/2018/08/wavelab.pdf

Make it available
1. Choose an open-source license.

2. Put your project on
Github.

Further reading: BSD vs MIT,

Open-source license, Wikipedia (2021)

Source: HamRadio.my

Most common for research code

tl;dr: Use the MIT license

35

https://opensource.stackexchange.com/questions/217/what-are-the-essential-differences-between-the-bsd-and-mit-licences

Outline

1. Make it run

2. Make it available

a. Open-source licenses
b. Get it on Github

3. Make it pretty

36

Exercise: Get the code up on Github!
1. Set up git
2. Create a new repo on Github

3. Download the empty repo to your local machine

4. Add files to a new workspace for the repo

5. Commit & sync files to Github

If you’re familiar with Github and your IDE, feel free to try without the
step-by-step directions!

37

1. Installing Git (1/2)
▪ First check if you already have Git installed

• In terminal/ command line: git —-version
▪ If you see a git version, you are all set. If not, follow the instructions below.

▪ On Mac
• Via Homebrew: brew install git
• Via Xcode: Apple ships a binary package of Git with Xcode. Therefore, just

download Xcode from App store and install it.

▪ On Linux
• Via Apt: apt-get install git

▪ On Windows
• Download the standalone installer and install it:

https://git-scm.com/download/win

38

https://git-scm.com/download/win

1. Setting up Git
▪ Open terminal /command line

• Configure your details
▪ git config –-global user.email “ you@example.com”
▪ git config --global user.name “Your Name”

39

mailto:you@example.com

1. Setting up Git (2/6)
▪ Git authentication
• To push/pull from a repository in Github, you will need to authenticate with a

username and password.
▪ Username: your Github username

▪ Password: generate an authentication as follows

• Settings → Developer settings → Personal access tokens → Tokens (classic)

• Click Generate new token and select generate new token (classic option)

40

1. Setting up Git (3/6)

▪ Git authentication (cont…)

• Provide a name for the token

• Configure token expiration day

• Select token scope (ex: what can someone
do with the token - generally ‘repo’ scope
is sufficient)

41

1. Setting up Git (4/6)
▪ Git authentication (cont…)

• Copy the token.

▪ Note: once you refresh the page,
you can not no longer view the
token and will have to regenerate.

• Keep this token saved somewhere as
we will use this later

42

2. Create a new repo on Github (1/2)
▪ Sign in to github.com

43

2. Create a new repo on Github (2/2)
▪ Choose a repo name and select an

open-source license

▪ .gitignore files indicate which
files NOT to add to the repo, like config
or password files.

44

3. Download the empty repo to your local machine (1/2)

45

3. Download the empty repo to your local machine (1/2)

▪ On the website:
• Copy the
https://github.com/
…

• Use the HTTPS option

▪ In the local terminal
• Navigate to where you want

to download the repo ($ cd
…)

• $ git clone
https://github.com/
…

46

4. Add files to a new workspace for the repo (1/2)
▪ Open up the repo in Visual Studio Code

• New Window
• Open Folder…

• Navigate to where you put the
repo

47

4. Add files to a new workspace for the repo (2/2)
▪ Copy all the files from the workspace you’ve been working in

▪ Paste them into the new workspace you just opened

New workspaceOld workspace 48

5. Commit & sync files to Github
▪ Commit = designate the files you want to add/change to

the repo (i.e., upload to Github)

▪ First, make sure the code in the new folder runs as
expected

▪ Then, add the files you want to commit to your repo by:
1. Navigate to the source control tab (left side panel)
2. Click the “+” on the corresponding files

▪ Commit and sync!
3. Add a commit message describing what you are uploading,

like “A fully working car following simulation example.”
4. Click Commit
5. Click Sync Changes
6. VSCode will prompt a window and ask you to sign into your

Github account. Once signed, the commit will be synced.

▪ Check that your changes now appear in your repo on
Github!
• Refresh the page

1

2

3

4 & 5

49

5. Commit & sync files to Github (terminal)
▪ If you prefer, you can do all this in the terminal
▪ $ git status

• See which files have changed

▪ $ git add <file>
• Add the files you wish to commit

▪ $ git status
• See which files you have staged for committing, remaining files which have changed

▪ $ git commit -m ”<commit message>”
• Commit the changes with a commit message describing what you are uploading

▪ $ git pull
• In this case, this won’t do anything, but it’s always good practice to pull in changes

to the repo (that your collaborators may have made) before pushing your new
changes

▪ $ git push
• This pushes your commit to Github!

Further reading (git): https://github.com/kbroman/Tools4RR/blob/main/04_Git/GitCommands/git_notes.md

50

https://github.com/kbroman/Tools4RR/blob/main/04_Git/GitCommands/git_notes.md

Show time!
▪ Double check that the project works and reproduces the plots

• Exit conda environment: $ conda deactivate
• Clone a fresh copy of the project from Github into a new directory

▪ Navigate to where you want to put the new directory. You want to explicitly give the new
directory name so that it does not conflict with the repo you original cloned

▪ $ git clone git@github.com:... <new directory name>
• Follow the README and confirm that it works

▪ The data and plots should look exactly the same as in the Github repo!

▪ Show us that it works

▪ Bonus hard mode: Ask someone else to confirm that it works.

51

Optional tips
▪ Your project probably won’t work the first time you try to run your

own instructions. Here are some suggestions on what to do when
it doesn’t work.

▪ If you conda environment creation fails, you’ll need to delete the
partially created conda environment before trying again

• Command to delete conda env: $ rm -rf /opt/anaconda3/envs/RR

52

Outline

1. Make it run

2. Make it available

3. Make it pretty

a. Organizing data and code
b. Making your code readable

53

Outline

1. Make it run

2. Make it available

3. Make it pretty

a. Organizing data and code
b. Making your code readable

54

Organizing data and code

The best time to figure out how you want your
project to be organized is before you begin. The

second best time is now!

55

Organizing code and data

Raw data

Processing, analysis,
modeling, plotting

Figure 1 Figure 2 Figure 3

56

Organizing code and data

Raw data

Plotting

Figure 1 Figure 2 Figure 3

Processing Analysis

Modeling

57

Organizing code and data

"Reproducible research best practices @JupyterCon." 8 Sept. 2024, www.kaggle.com/code/rtatman/reproducible-research-best-practices-jupytercon.

Organization principles
✅ As modular as possible
✅ Save the output of every
step

Why?
👍 Research productivity: avoid
running the full pipeline unless
necessary
👍 Ease reproducibility: can
use intermediate outputs

Exercise: Organize the ITS
code example into directories

58

http://www.kaggle.com/code/rtatman/reproducible-research-best-practices-jupytercon

Organization takes time.

Be prepared to refactor as the project evolves.

The sooner the better, to minimize “tech debt.”

59

Car following simulation
▪ Discussion:

• (a) Is it easy to understand what everything is?
• (b) Did you document the process of data preparation and analysis?
• (c) How might you re-organize things, to make it more clear to someone else,

or to you a year from now?
• (d) Do you need more documentation (e.g., README files) or are the file

names and organization self-explanatory?

60

▪ Modularize the codebase by splitting the simulation code from the
plotting code.

▪ Provide an example of how to plot the figures in a Jupyter
Notebook, separate from the python scripts.

▪ Create separate directories for assets, data, figures.
▪ Create a config.py for shared parameters.

Suggestions for organizing code and data

61

Outline

1. Make it run

2. Make it available

3. Make it pretty

a. Organizing data and code
b. Making your code readable

62

What does this code do?

63

What does this code do?

64

Make it pretty: making your code readable
Principles for making your code readable

▪ Help readers follow the logic
• Logical and human readable variable names
• Modular classes and functions
• Comment your code! Explain your thought process & design choices

▪ Ease readability by following stylistic conventions
• Put all package imports at the top of the file
• Use white space for readability

▪ Break up long lines (keep lines <120 characters)

• Consistent patterns of capitalization (e.g., ALL CAPS for constants,
lower_case_with_underscores for functions and variables,
lower-case-with-dashes for directories)

65

Style guides
▪ Style guides for academic writing:

• MLA, APA or Chicago/Turabian

▪ Style guides for code (Python)
• PEP 8, Google style guide

▪ Linter: Tools that analyze source
code to flag programming errors,
bugs, stylistic errors, and
suspicious constructs.
• Like a grammar checker but for code
• Ex. Pylint for Python

66

https://www.python.org/dev/peps/pep-0008/
https://github.com/google/styleguide/blob/gh-pages/pyguide.md
http://en.wikipedia.org/wiki/Lint_%28software%29
https://www.pylint.org/

Pylint + Visual Studio Code demo

Further reading: https://code.visualstudio.com/docs/python/linting

67

https://code.visualstudio.com/docs/python/linting

Adding your first VS Code extension

1) Extensions tab

3) Install extension

2) Find extension

68

Setting up pylint: select the python interpreter

Select python interpreter

69

Using pylint: Problems pane

70

Show time!
▪ Commit your changes (same as before)
▪ Show us that it works (same as before)

▪ Exchange projects with someone and ask them to critique yours.
What organization could help someone more easily build on the
project?

▪ Remember, that someone could be you in 6 months!

71

Reference implementation (try it yourself first!)
▪ See https://github.com/cathywu/itsc24-rr-tutorial-example for a

reference implementation of this session’s hands on activity.

72

https://github.com/cathywu/itsc24-rr-tutorial-example

Acknowledgements
▪ Main contributor:

• Cathy Wu
▪ Contributing content

• Vindula Jayawardana, Jung-Hoon Cho
▪ Testers

• Cathy Wu’s research group, Xiaoyi Wu, Kate Sanborn
▪ Brainstorming

• Bidisha Ghosh, Irene Martínez, Nicholas Saunier
▪ Support

• RERITE working group
▪ CPS-IoT Week

• For giving us an opportunity to broadcast the efforts

🙏
73

https://rrintransportation.github.io/

