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Infrastructure systems are networked,
leading to propagation of impacts

e.g, Delay propagation in air traffic networks
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Some properties of infrastructure networks
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[Traffic Data: NYC Taxi & Limousine-€o [Delay Data: Bureau of Transportation Statistics]

Nodal and link states are best modeled as continuous variables

Interactions are weighted and directed (asymmetric)
Interactions (network topologies) vary with time
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A network-centric view of air traffic delays

For example, delay levels on edges between airports
Weighted, directed, time-varying networks
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Simplistic model of delay dynamics

Given an adjacency matrix, A = [a;]
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Therefore, for given network topology: Z(t + 1) = I'(¢)Z(¢)

(T
where TI'(¢) = [o] + [8] [/T(()t) A(é) ]
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Network topology is time-varying

For tractability, assume that network topology belongs to a
finite (known) set of possibilities

Results in a hybrid system

Assume that network topology switches between different
values in a Markovian manner

Results in a Markov Jump Linear System

Each discrete mode has its own linear dynamics, depending on
the network topology (adjacency matrix)
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Dynamics with switching network topologies

|dentify set of characteristic topologies
(““discrete modes of operation”)

Determine linear continuous state
dynamics under a fixed topology

Switched linear system with Markovian
transitions:

)—C)(t_l_l) — Fm(t))—é(t) (
mii(t) = Prim(t+1)= jlm(t) =] e
Rt+1) = JTix(e), it m(t) =i and m(r+1) ]g

Markov Jump Linear System (MJLS)
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Mode: SFO increasing Mode: SFO decreasing Mode: High NAS incr

ing Mode: High NAS decreasing
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Stability of MJLS models

“Physical interpretation”: Will delays increase or decrease over time
(e.g., over the course of a day)?

Mean Stability: Expected value of state tends to zero as time tends to
infinity, that is, k]im E[||x(k)|l] =0
—3o0

Almost-Sure Stability: A system is said to be almost-surely stable if the
state tends to zero as time tends to infinity with probability 1, that is,

Pr{lim [|¥(k)|| = 0] = 1,
for any nonnegative initial condition ¥(0).

Derive conditions for the stability of a discrete-time Markov Jump
Linear System with time-varying transition matrices and continuous

state resets (depends on I'/s, m(t) and J;)
(‘ FORCES
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Stability of MJLS model

Consider stability of MJLS model with periodic time-varying
mode transition matrices (determined by hour of day)

Resulting MJLS model shown to be mean and almost surely
stable

System appears to be stabilized by the temporal variations in the

mode transition matrices
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Total system delay ( x 10% minutes)

MJLS model validation

Model learned using 2011 data; validation using 2012 data
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Measure of airport resilience: Delay persistence
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(Color and size of circle both denote induced inbound delay per unit delay at other airport)
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* Airports within a community have high delays between them
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Community structure for delay network ( 23 March 2011)
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Ongoing efforts and next steps

Penn i s ‘
Grand Central

Analysis of finite-time behavior S s

Factors that trigger mode transitions ..

Weather impacts, Traffic Management
Initiatives

Post-disruption recovery
Optimal control of networks with
switching

Prediction of future delays and delay
states

[

Multi-layer, multi-timescale networks
Cancellations, operations, capacity
impact [ICRAT 2016]

Interactions between networks
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