

Resilience of Networks with Switching Topologies

Hamsa Balakrishnan (with Karthik Gopalakrishnan & Joao Cavalcanti)

Infrastructure systems are networked, leading to propagation of impacts

* e.g, Delay propagation in air traffic networks

26 July 2012, 4 AM EST

(Average link delay in minutes)

Some properties of infrastructure networks

Page 3

1/22/17

[Delay Data: Bureau of Transportation Statistics]

- Nodal and link states are best modeled as continuous variables
- * Interactions are weighted and directed (asymmetric)
- * Interactions (network topologies) vary with time

A network-centric view of air traffic delays

- * For example, delay levels on edges between airports
- * Weighted, directed, time-varying networks

$$a_{ij} = \begin{cases} w_{ij}, & \text{if } (i,j) \in \mathscr{E}, \\ 0, & \text{otherwise} \end{cases}$$

Simplistic model of delay dynamics

* Given an adjacency matrix, $A = [a_{ij}]$

$$d_{in}^i(t+1) = lpha_{in}^i d_{in}^i(t) + \sum_j eta_{ji}^{in} \overline{a}_{ji}(t) d_{out}^j(t)$$
 BOS $d_{in}=80$ $d_{out}=0$ $d_{out}^i(t+1) = lpha_{out}^i d_{out}^i(t) + \sum_j eta_{ij}^{out} \overline{a}_{ij}(t) d_{in}^j(t)$ SFO

* Therefore, for given network topology: $\vec{x}(t+1) = \Gamma(t)\vec{x}(t)$ where $\Gamma(t) = [\alpha] + [\beta] \begin{bmatrix} 0 & \overline{A}(t)^T \\ \overline{A}(t) & 0 \end{bmatrix}$

 $d_{in}=55$

 $d_{out}=90$

 $d_{in}=0$

 $d_{out}=65$

Network topology is time-varying

- * For tractability, assume that network topology belongs to a finite (known) set of possibilities
 - * Results in a hybrid system
- * Assume that network topology switches between different values in a Markovian manner
 - Results in a Markov Jump Linear System
- Each discrete mode has its own linear dynamics, depending on the network topology (adjacency matrix)

Dynamics with switching network topologies

- * Identify set of characteristic topologies ("discrete modes of operation")
- * Determine linear continuous state dynamics under a fixed topology
- * Switched linear system with Markovian transitions:

$$\vec{x}(t+1) = \Gamma_{m(t)}\vec{x}(t)$$

$$\pi_{ij}(t) = \Pr[m(t+1) = j|m(t) = i]$$

$$\vec{x}(t+1) = J_{ij}\Gamma_i\vec{x}(t), \text{ if } m(t) = i \text{ and } m(t+1) = j$$

* Markov Jump Linear System (MJLS)

Individual discrete modes

Stability of MJLS models

- * "Physical interpretation": Will delays increase or decrease over time (e.g., over the course of a day)?
- * Mean Stability: Expected value of state tends to zero as time tends to infinity, that is, $\mathbb{E}[|\mathbf{x}(k)|| = 0$.
- * Almost-Sure Stability: A system is said to be almost-surely stable if the state tends to zero as time tends to infinity with probability 1, that is,

 $\Pr[\lim_{k\to\infty}||\vec{x}(k)||=0]=1,$

for any nonnegative initial condition $\vec{x}(0)$.

* Derive conditions for the stability of a discrete-time Markov Jump Linear System with time-varying transition matrices and continuous state resets (depends on Γ_i 's, $\pi_{ij}(t)$ and J_{ij})

Transition matrices exhibit temporal patterns

Stability of MJLS model

- * Consider stability of MJLS model with periodic time-varying mode transition matrices (determined by hour of day)
- * Resulting MJLS model shown to be mean and almost surely stable
- System appears to be stabilized by the temporal variations in the mode transition matrices

MJLS model validation

* Model learned using 2011 data; validation using 2012 data

Measure of airport resilience: Delay persistence

Measure of airport resilience: Network effects

$$d_{in}^{i}(t+1) = \underbrace{\alpha_{in}^{i}d_{in}^{i}(t) + \sum_{j} \beta_{ji}^{in} \overline{a_{ji}}(t) d_{out}^{j}(t)}_{j} + \underbrace{\sum_{j} \beta_{ij}^{out} \overline{a_{ij}}(t) d_{in}^{j}(t)}_{Network \ effect}$$
Persistence
Houston
Seattle
0.002
0.015
0.005

(Color and size of circle both denote induced inbound delay per unit delay at other airport)

Delay communities

* Airports within a community have high delays between them

Community structure for delay network (23 March 2011)

Ongoing efforts and next steps

- * Analysis of finite-time behavior
- * Factors that trigger mode transitions
 - * Weather impacts, Traffic Management Initiatives
- * Post-disruption recovery
 - Optimal control of networks with switching
- * Prediction of future delays and delay states
- * Multi-layer, multi-timescale networks
 - * Cancellations, **operations**, capacity impact [ICRAT 2016]
 - Interactions between networks

