Resilience of Networks with Switching Topologies Hamsa Balakrishnan (with Karthik Gopalakrishnan & Joao Cavalcanti) # Infrastructure systems are networked, leading to propagation of impacts * e.g, Delay propagation in air traffic networks 26 July 2012, 4 AM EST (Average link delay in minutes) #### Some properties of infrastructure networks Page 3 1/22/17 [Delay Data: Bureau of Transportation Statistics] - Nodal and link states are best modeled as continuous variables - * Interactions are weighted and directed (asymmetric) - * Interactions (network topologies) vary with time ## A network-centric view of air traffic delays - * For example, delay levels on edges between airports - * Weighted, directed, time-varying networks $$a_{ij} = \begin{cases} w_{ij}, & \text{if } (i,j) \in \mathscr{E}, \\ 0, & \text{otherwise} \end{cases}$$ # Simplistic model of delay dynamics * Given an adjacency matrix, $A = [a_{ij}]$ $$d_{in}^i(t+1) = lpha_{in}^i d_{in}^i(t) + \sum_j eta_{ji}^{in} \overline{a}_{ji}(t) d_{out}^j(t)$$ BOS $d_{in}=80$ $d_{out}=0$ $d_{out}^i(t+1) = lpha_{out}^i d_{out}^i(t) + \sum_j eta_{ij}^{out} \overline{a}_{ij}(t) d_{in}^j(t)$ SFO * Therefore, for given network topology: $\vec{x}(t+1) = \Gamma(t)\vec{x}(t)$ where $\Gamma(t) = [\alpha] + [\beta] \begin{bmatrix} 0 & \overline{A}(t)^T \\ \overline{A}(t) & 0 \end{bmatrix}$ $d_{in}=55$ $d_{out}=90$ $d_{in}=0$ $d_{out}=65$ # Network topology is time-varying - * For tractability, assume that network topology belongs to a finite (known) set of possibilities - * Results in a hybrid system - * Assume that network topology switches between different values in a Markovian manner - Results in a Markov Jump Linear System - Each discrete mode has its own linear dynamics, depending on the network topology (adjacency matrix) #### Dynamics with switching network topologies - * Identify set of characteristic topologies ("discrete modes of operation") - * Determine linear continuous state dynamics under a fixed topology - * Switched linear system with Markovian transitions: $$\vec{x}(t+1) = \Gamma_{m(t)}\vec{x}(t)$$ $$\pi_{ij}(t) = \Pr[m(t+1) = j|m(t) = i]$$ $$\vec{x}(t+1) = J_{ij}\Gamma_i\vec{x}(t), \text{ if } m(t) = i \text{ and } m(t+1) = j$$ * Markov Jump Linear System (MJLS) #### Individual discrete modes # Stability of MJLS models - * "Physical interpretation": Will delays increase or decrease over time (e.g., over the course of a day)? - * Mean Stability: Expected value of state tends to zero as time tends to infinity, that is, $\mathbb{E}[|\mathbf{x}(k)|| = 0$. - * Almost-Sure Stability: A system is said to be almost-surely stable if the state tends to zero as time tends to infinity with probability 1, that is, $\Pr[\lim_{k\to\infty}||\vec{x}(k)||=0]=1,$ for any nonnegative initial condition $\vec{x}(0)$. * Derive conditions for the stability of a discrete-time Markov Jump Linear System with time-varying transition matrices and continuous state resets (depends on Γ_i 's, $\pi_{ij}(t)$ and J_{ij}) #### Transition matrices exhibit temporal patterns ## Stability of MJLS model - * Consider stability of MJLS model with periodic time-varying mode transition matrices (determined by hour of day) - * Resulting MJLS model shown to be mean and almost surely stable - System appears to be stabilized by the temporal variations in the mode transition matrices #### MJLS model validation * Model learned using 2011 data; validation using 2012 data #### Measure of airport resilience: Delay persistence #### Measure of airport resilience: Network effects $$d_{in}^{i}(t+1) = \underbrace{\alpha_{in}^{i}d_{in}^{i}(t) + \sum_{j} \beta_{ji}^{in} \overline{a_{ji}}(t) d_{out}^{j}(t)}_{j} + \underbrace{\sum_{j} \beta_{ij}^{out} \overline{a_{ij}}(t) d_{in}^{j}(t)}_{Network \ effect}$$ Persistence Houston Seattle 0.002 0.015 0.005 (Color and size of circle both denote induced inbound delay per unit delay at other airport) #### Delay communities * Airports within a community have high delays between them Community structure for delay network (23 March 2011) # Ongoing efforts and next steps - * Analysis of finite-time behavior - * Factors that trigger mode transitions - * Weather impacts, Traffic Management Initiatives - * Post-disruption recovery - Optimal control of networks with switching - * Prediction of future delays and delay states - * Multi-layer, multi-timescale networks - * Cancellations, **operations**, capacity impact [ICRAT 2016] - Interactions between networks