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 ‘Hybrid’* models of aircraft engine performance 

 Physical principles + operational flight data (e.g. from FDR) 

 Aircraft engine performance + statistical data analysis/machine 
learning 

 Intended intellectual outputs of the research 

 Methodology and techniques used to build the models 

 The models themselves 

 
*Jaw, L. C., and Mattingly, J. D., Aircraft Engine Controls: Design, System Analysis, and 
Health Monitoring, AIAA, Inc., Reston, Virginia, 2009, Chap. 8. 

Research Objectives 
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 Gas turbine performance simulation software 

 Require knowledge of engine parameters – not easy to access    

 Data-driven models of engine performance 

 Non-operational data from flight manuals, ground tests 

 Inability to quantify variability in performance for the same engine 
type (pilot behavior, operational and maintenance procedures, etc.)  

 ICAO Aircraft Engine Emissions Databank 

 Base of Aircraft Data (BADA) 

 

 

Current Practice 
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 Predictor variables: pressure altitude (in m) [h], normalized 
ground [v] and vertical speeds [ℎ ], normalized aircraft mass [W] 

 Response variable: normalized fuel flow rate per engine [𝑚𝑓 ] 

 Methods 

 Classification And Regression Trees (CART) model 

 Ensemble (boosted CART) model 

 Bayesian Multiple Linear Regression (BMLR) model 
 
 

  

 

Regression Methodology 
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 Sample mean prediction error: 

 

 

 

 

 95% prediction interval coverage: 

 

Performance of CART Models v/s BADA 
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Phase/Method CART Boosted CART BADA 

Ascent 1.4 – 2.5% 0.7 – 1.4% 5.9 – 22.4% 

Cruise 2.8 – 8.2% 2.0 -- 6.3% 12.2 -- 108.1% 

Descent 15.0 – 18.6% 9.9 – 12.5% 31.4 – 59.8% 

Phase/Method CART Boosted CART BADA 

Ascent 55.0 – 60.3% 70.0 -- 77.0% 0 

Cruise 50.2 – 62.4% 59.7 -- 66.2% 0 

Descent 52.6 -- 59.8% 63.6 -- 67.7% 0 
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Hierarchical BMLR for A320-200 in Cruise 
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BMLR: Bayesian Multiple 
Linear Regression 
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 Gibbs sampling 

 3 Markov Chain Monte Carlo (MCMC) chains 

 10000 samples 

 15000 burn in samples 

 Thinning = 110 

 Good mixing among chains => convergence to target posterior 
distribution 

 Posterior distributions of aircraft type-level regression 
coefficients used to develop posterior predictive distributions on 
test data 

 

Hierarchical BMLR Model Training and Testing 

11/4/2015 



Page 10 

Model Mean Error  (%) Mean Length of 
Prediction 

Interval 

Percent Coverage (%) 

Hierarchical BMLR 6.7 0.0204 37.6 

Non hierarchical BMLR 6.2 0.0067 14.9 

Robust Least Squares 6.3 0.0088 18.1 

CART 6.4 0.0503 58.4 

Boosted CART 4.0 0.0318 65.6 

Predictive Performance Comparison across 
Models 
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BMLR: Bayesian Multiple Linear Regression 
CART: Classification And Regression Trees 
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 Bayesian models yield the complete posterior distributions 

 Making predictions on new data computationally simpler 

 Larger training time 

 Hierarchical models: model relationships among different flights 
and aircraft types  

 Nonparametric methods give better predictive performance 

 Bayesian trees? 

 Extension to other aircraft/engine types and flight modes 

 Time series analysis using Bayesian nonparametric methods to 
identify the modes 

 

 

 

Discussion 

11/4/2015 



Page 12 

 

THANK YOU 

11/4/2015 



Page 13 

 

BACKUP SLIDES 
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 Generation of fuel burn and emissions inventories 

 Development of flight paths optimal on fuel burn 

 Methodology behind model building can give insights into the 
application of data analysis techniques to aeronautical datasets 

 Models built on operational flight data are abstractions of such 
data 

 Can be used by researchers as tools in the absence of raw 
operational data 

Foreseen Uses of Our Research 
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 Use of operational flight data from FDR to build models 

 Bypass need to know internal engine parameters 

 Capture variability in performance of the same engine type 

 Combination of physical insights and data analysis techniques 

 Ensure data-based models conform to physical principles governing 
engine performance 

 

 

 

Novelty in Our Approach 
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 Risks 

 Performance of models outside range of training data? 

 Scale of model applicability (aircraft types, O-D pairs)? 

 Payoffs 

 Potential ‘proof of concept’ 

 Merits of using operational data to model engine performance 

 Methods can be used to expand the models as more data are 
available 

 

Risks and Payoffs 
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 Sample mean prediction error: 

 

 

 

 

 95% prediction interval coverage: 

 

Performance of CART Models v/s ICAO 
Databank 
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Phase/Method CART Boosted CART ICAO Databank 

Climb out (<= 3000’ AGL) 1.0 – 4.8% 0.3 – 2.5% 6.2 – 33.8% 

Approach (<= 3000’ AGL)  13.7 – 20.5% 6.5 – 12.8% 35.0 – 96.3% 

Phase/Method CART Boosted CART ICAO Databank 

Climb out (<= 3000’ AGL) 55.3 – 63.8% 69.8 – 79.1% 0 

Approach (<= 3000’ AGL)  55.0 – 61.2% 63.4 – 70.9% 0 


