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+ ‘Hybrid”™ models of aircraft engine performance
« Physical principles + operational flight data (e.g. from FDR)

+ Aircraft engine performance + statistical data analysis/machine
learning

+ Intended intellectual outputs of the research
+ Methodology and techniques used to build the models
* The models themselves

*Jaw, L. C., and Mattingly, J. D., Aircraft Engine Controls: Design, System Analysis, and
Health Monitoring, AIAA, Inc., Reston, Virginia, 2009, Chap. 8.
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Gas turbine performance simulation software

* Require knowledge of engine parameters — not easy to access

Data-driven models of engine performance
* Non-operational data from flight manuals, ground tests

* Inability to quantify variability in performance for the same engine
type (pilot behavior, operational and maintenance procedures, etc.)

ICAO Aircraft Engine Emissions Databank

Base of Aircraft Data (BADA)
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« Predictor variables: pressure altitude (in m) [h], normalized
ground [v] and vertical speeds [h], normalized aircraft mass [W]

* Response variable: normalized fuel flow rate per engine [nif]
+ Methods

+ Classification And Regression Trees (CART) model

+ Ensemble (boosted CART) model

+ Bayesian Multiple Linear Regression (BMLR) model
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* Sample mean prediction error:

Phase/Method CART Boosted CART BADA

Ascent 1.4 — 2.5% 0.7 —1.4% 5.9 — 22.4%
Cruise 2.8 - 8.2% 2.0 - 6.3% 12.2 -108.1%
Descent 15.0 — 18.6% 9.9 - 12.5% 31.4 - 59.8%

+ 95% prediction interval coverage:

Phase/Method CART Boosted CART BADA

Ascent 55.0 — 60.3% 70.0 -- 77.0%
Cruise 50.2 — 62.4% 59.7 - 66.2% 0
Descent 52.6 -- 59.8% 63.6 - 67.7% o)

Page 5 CYBER-PHYSIGAL SYSTEMS 11/4/2015



Generalized

Turbofan

Engine E, seeeeseees Engine E,

| |
m e0e 000 000 o m m eee 000 000 o F"ghtFkn

' Mode M, | Mode M, l Mode M, | Mode M_, Mode M, Mode M Mode M, Mode M_,

C:;) FORCES

FOUNDATIONS OF RESILIENT
CYBER-PHYSICAL SYSTEMS 11/4/2015

Page 6



Generalized

Turbofan
( | 1
Engine E, seeeeseees Engine E,
| 1 | 1
Flight F, teecsssess Flight F,, Flight F, tee esssess Flight F,
| 1
Mode M, Mode M, Mode M, Mode M_, Mode M, Mode M Mode M, Mode M_,

C:;) FORCES

FOUNDATIONS OF RESILIENT
CYBER-PHYSICAL SYSTEMS 11/4/2015

Page 7



\

mean = ( mode = 1 mea.ﬂ=0 m.ode 1
sd. =10 sd. =10 mean = 29 sd

M W exp norma

M[“‘-\

:f-.l
Vﬂﬂ-l-l
W

._'_______..--"
Ko T80, V5o “’ﬁk? OB Vﬁt

A +

4 4
Bo; + Z Bie; Xkeifj + Z "r’k_;;Xk?H

k=1 k=1
. - v

deterministic

relation

stochastic M

relation

1=12,3,...,169

k=1,2,3,4

Xp—qy:th, Xp—o 1 v, Xpes thy, Xpy : W

@ FORCES

FOUNDATIONS OF RESILIENT
CYBER-PHYSICAL SYSTEMS

Page 8

meun—U mode, 1

10 = mean = 29

norma gamma

P’m: s Oy s Vi
t

/\/\rx\
7
v—l—l

,--"""'..F/

”‘ﬂjzazy

e

il
My

BMLR: Bayesian Multiple
Linear Regression
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* Gibbs sampling
« 3 Markov Chain Monte Carlo (MCMCQ) chains
* 10000 samples
* 15000 burn in samples
* Thinning =110
+ Good mixing among chains => convergence to target posterior
distribution

+ Posterior distributions of aircraft type-level regression
coefficients used to develop posterior predictive distributions on

test data
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Mean Error (%) | Mean Length of

Prediction
Interval
Hierarchical BMLR 6.7 0.0204
Non hierarchical BMLR 6.2 0.0067
Robust Least Squares 6.3 0.0088
CART 6.4 0.0503
Boosted CART 4.0 0.0318

BMLR: Bayesian Multiple Linear Regression
CART: Classification And Regression Trees
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Percent Coverage (%)

37.6
14.9
18.1
58.4
65.6
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+ Bayesian models yield the complete posterior distributions
+ Making predictions on new data computationally simpler
+ Larger training time

+ Hierarchical models: model relationships among different flights
and aircraft types

* Nonparametric methods give better predictive performance
* Bayesian trees?
+ Extension to other aircraft/engine types and flight modes

+ Time series analysis using Bayesian nonparametric methods to
identify the modes
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+ Generation of fuel burn and emissions inventories

+ Development of flight paths optimal on fuel burn

+ Methodology behind model building can give insights into the
application of data analysis techniques to aeronautical datasets

+ Models built on operational flight data are abstractions of such
data

* Can be used by researchers as tools in the absence of raw
operational data
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+ Use of operational flight data from FDR to build models
+ Bypass need to know internal engine parameters
+ Capture variability in performance of the same engine type

* Combination of physical insights and data analysis techniques

* Ensure data-based models conform to physical principles governing
engine performance
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+ Risks
* Performance of models outside range of training data?
+ Scale of model applicability (aircraft types, O-D pairs)?

 Payoffs
+ Potential ‘proof of concept’
* Merits of using operational data to model engine performance

+ Methods can be used to expand the models as more data are
available
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* Sample mean prediction error:

Phase/Method CART Boosted CART | ICAO Databank

Climb out (<= 3000’ AGL) 1.0 — 4.8% 0.3 - 2.5% 6.2 — 33.8%
Approach (<=3000’ AGL)  13.7—20.5% 6.5 —12.8% 35.0 — 96.3%

+ 95% prediction interval coverage:

Phase/Method CART Boosted CART | ICAO Databank

Climb out (<= 3000’ AGL) 55.3 - 63.8% 69.8 — 79.1%
Approach (<= 3000’ AGL)  55.0 - 61.2% 63.4 — 70.9% 0
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