

Data-Driven Modeling of Aircraft Engine Performance

Yashovardhan S. Chati, Hamsa Balakrishnan 4 November 2015

Research Objectives

- * 'Hybrid'* models of aircraft engine performance
 - * Physical principles + operational flight data (e.g. from FDR)
 - Aircraft engine performance + statistical data analysis/machine learning
- * Intended intellectual outputs of the research
 - * Methodology and techniques used to build the models
 - * The models themselves

^{*}Jaw, L. C., and Mattingly, J. D., Aircraft Engine Controls: Design, System Analysis, and Health Monitoring, AIAA, Inc., Reston, Virginia, 2009, Chap. 8.

Current Practice

- * Gas turbine performance simulation software
 - * Require knowledge of engine parameters not easy to access
- * Data-driven models of engine performance
 - * Non-operational data from flight manuals, ground tests
 - Inability to quantify variability in performance for the same engine type (pilot behavior, operational and maintenance procedures, etc.)
- * ICAO Aircraft Engine Emissions Databank
- * Base of Aircraft Data (BADA)

Regression Methodology

- Predictor variables: pressure altitude (in m) [h], normalized ground [v] and vertical speeds [h], normalized aircraft mass [W]
- * Response variable: normalized fuel flow rate per engine $[\dot{m}_f]$
- * Methods
 - * Classification And Regression Trees (CART) model
 - * Ensemble (boosted CART) model
 - * Bayesian Multiple Linear Regression (BMLR) model

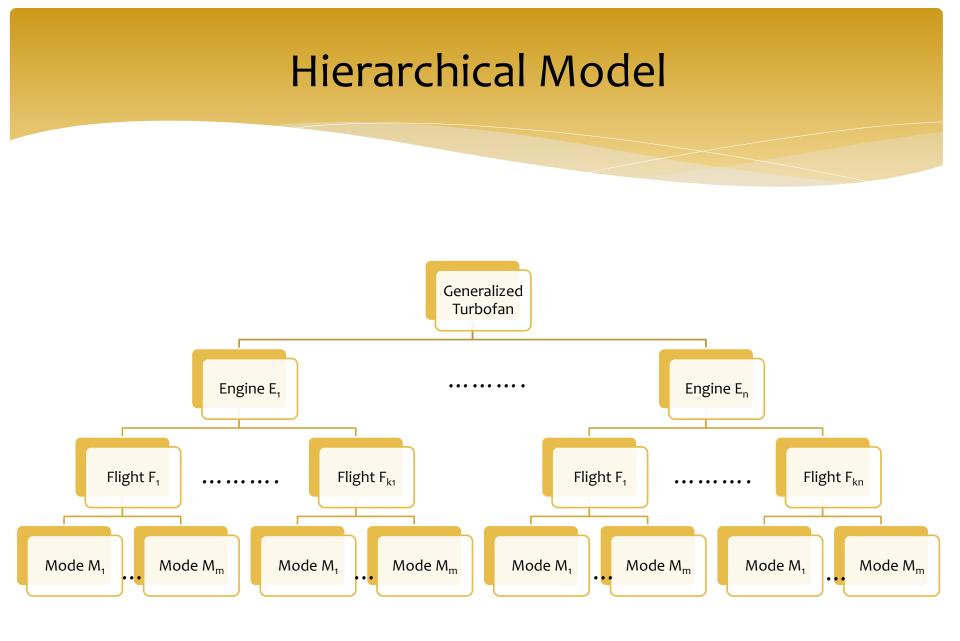
Performance of CART Models v/s BADA

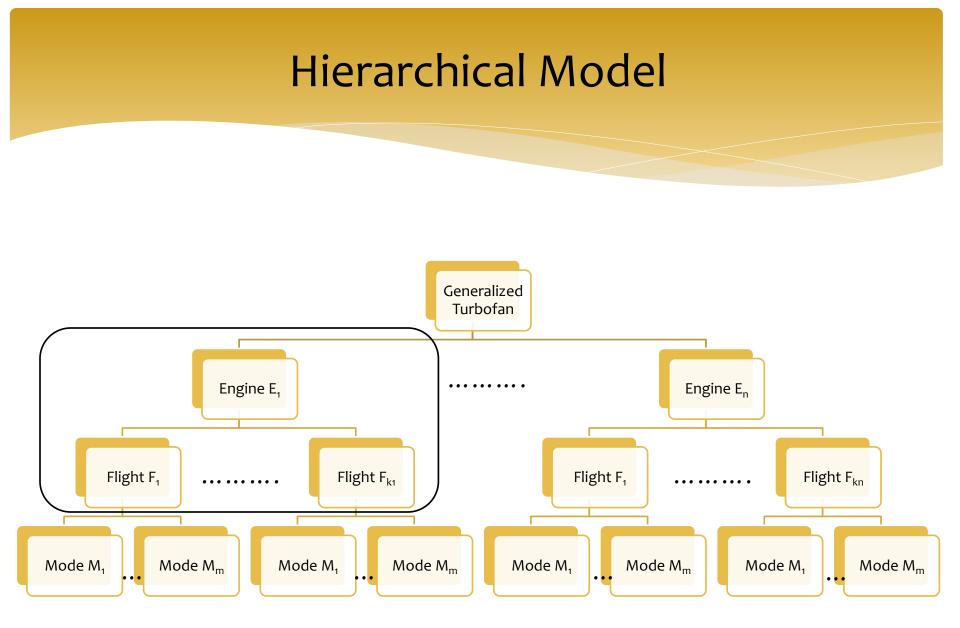
* Sample mean prediction error:

Phase/Method	CART	Boosted CART	BADA
Ascent	1.4 – 2.5%	0.7 – 1.4%	5.9 - 22.4%
Cruise	2.8 – 8.2%	2.0 6.3%	12.2 108.1%
Descent	15.0 – 18.6%	9.9 – 12.5%	31.4 - 59.8%

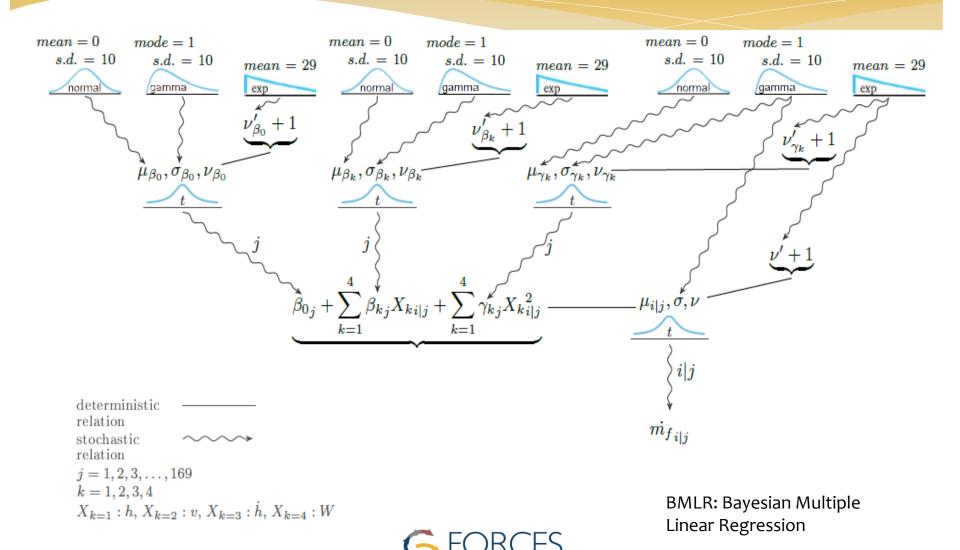
* 95% prediction interval coverage:

Phase/Method	CART	Boosted CART	BADA
Ascent	55.0 – 60.3%	70.0 77.0%	0
Cruise	50.2 – 62.4%	59.7 66.2%	0
Descent	52.6 59.8%	63.6 67.7%	0





Hierarchical BMLR for A320-200 in Cruise



BER-PHYSICAL SYSTEMS

Hierarchical BMLR Model Training and Testing

- Gibbs sampling
 - * 3 Markov Chain Monte Carlo (MCMC) chains
 - * 10000 samples
 - * 15000 burn in samples
 - * Thinning = 110
- Good mixing among chains => convergence to target posterior distribution
- Posterior distributions of aircraft type-level regression coefficients used to develop posterior predictive distributions on test data

Predictive Performance Comparison across Models

Model	Mean Error (%)	Mean Length of Prediction Interval	Percent Coverage (%)
Hierarchical BMLR	6.7	0.0204	37.6
Non hierarchical BMLR	6.2	0.0067	14.9
Robust Least Squares	6.3	0.0088	18.1
CART	6.4	0.0503	58.4
Boosted CART	4.0	0.0318	65.6

BMLR: Bayesian Multiple Linear Regression CART: Classification And Regression Trees

Discussion

- Bayesian models yield the complete posterior distributions
 - * Making predictions on new data computationally simpler
 - Larger training time
- Hierarchical models: model relationships among different flights and aircraft types
- * Nonparametric methods give better predictive performance
 - * Bayesian trees?
- * Extension to other aircraft/engine types and flight modes
 - Time series analysis using Bayesian nonparametric methods to identify the modes

THANK YOU

BACKUP SLIDES

Foreseen Uses of Our Research

- * Generation of fuel burn and emissions inventories
- * Development of flight paths optimal on fuel burn
- Methodology behind model building can give insights into the application of data analysis techniques to aeronautical datasets
- Models built on operational flight data are abstractions of such data
 - Can be used by researchers as tools in the absence of raw operational data

Novelty in Our Approach

- * Use of operational flight data from FDR to build models
 - * Bypass need to know internal engine parameters
 - * Capture variability in performance of the same engine type
- * Combination of physical insights and data analysis techniques
 - Ensure data-based models conform to physical principles governing engine performance

Risks and Payoffs

* Risks

- * Performance of models outside range of training data?
- * Scale of model applicability (aircraft types, O-D pairs)?
- * Payoffs
 - * Potential 'proof of concept'
 - * Merits of using operational data to model engine performance
 - Methods can be used to expand the models as more data are available

Performance of CART Models v/s ICAO Databank

* Sample mean prediction error:

Phase/Method	CART	Boosted CART	ICAO Databank
Climb out (<= 3000' AGL)	1.0 – 4.8%	0.3 – 2.5%	6.2 – 33.8%
Approach (<= 3000' AGL)	13.7 – 20.5%	6.5 – 12.8%	35.0 - 96.3%

* 95% prediction interval coverage:

Phase/Method	CART	Boosted CART	ICAO Databank
Climb out (<= 3000' AGL)	55.3 – 63.8%	69.8 – 79.1%	0
Approach (<= 3000' AGL)	55.0 – 61.2%	63.4 – 70.9%	0

