
Platform-based Resilience for
CPS

Gabor Karsai

Vanderbilt University

Page 2

Domain:
Power Transmission and Distribution Systems

Power systems are potentially vulnerable in all
components: generators, transmission and
distribution system, end-user loads,
protection system, power management
systems –

Threat model: Physical faults + …
 Mis-operation of protective equipment
 Integrity/DDOS attack on the network
 Replay attacks, etc.

Resilience challenges:
 Faults in the power system, in computing

hardware and software, in the network
 Algorithms for protection, monitoring, control,

energy management, state estimation, analytics..
 Defense against and recovery from cyber-attacks

Supported, in part, by ARPA-E

Page 3

The Evolution of Energy Networks

Traditional networks with
transmission system operators,
distribution system operators &

radial distribution systems to
communities

Page 4

The Evolution of Energy Networks

Network of distribution feeders
with some microgrids with

tightly integrated distributed
energy resources

• Advantages of
decentralization

– Improved cyber &
physical reliability by
removing single point of
failures

– Faster decision making by
avoiding network
penalties due to round-
trip to the cloud

– Improved scalability

– Better integration with
hierarchical control
systems

Page 5

The Evolution of Energy Networks

Future

Network of transactive
microgrids with limited role of
distribution system operators

Network of distribution feeders
with some microgrids with

tightly integrated distributed
energy resources

Traditional networks with
transmission system operators,
distribution system operators &

radial distribution systems to
communities

Page 6

The trend of decentralization

Future

Network of transactive
microgrids with limited role of
distribution system operators

Network of distribution feeders
with some microgrids with

tightly integrated distributed
energy resources

Traditional networks with
transmission system operators,
distribution system operators &

radial distribution systems to
communities

This trend of decentralization can be seen around many other cyber-physical
system applications, for example: smart manufacturing, smart cities, etc.

Page 7

Mid 1990s

Mid 2000s

Grid Computing

Small
Homogeneous

Clusters

Late 2000s

Cloud Computing

Present

Ubiquitous Computing (mobile, IoT, IIoT)

Future of Ubiquitous Computing
(E.g.: Smart cities)

Emerging trends

What enables this trend of decentralization?

Page 8

The increased DevOps complexity

Future

Network of transactive
microgrids with limited role of
distribution system operators

Network of distribution feeders
with some microgrids with

tightly integrated distributed
energy resources

 Programming, developing,
managing decentralized &
distributed networks is hard

 A number of services that are
orthogonal to the application
logic are required

• Time synchronization

• Messaging middleware

• Consensus & coordination
mechanisms

• Discovery & deployment
mechanisms

• Fault-detection & recovery
mechanisms

• Distributed security
mechanisms

Page 9

The increased DevOps complexity

Future

Network of transactive
microgrids with limited role of
distribution system operators

Network of distribution feeders
with some microgrids with

tightly integrated distributed
energy resources

 Programming, developing,
managing decentralized &
distributed networks is hard

 A number of services that are
orthogonal to the application
logic are required

• Time synchronization

• Messaging middleware

• Consensus & coordination
mechanisms

• Discovery & deployment
Mechanisms

• Fault-detection & recovery
mechanisms

• Distributed security
mechanisms

This motivates the need for a middleware platform that can, in principle, make the
task of programming these decentralized cyber-physical systems easier.

Page 10

• Goal: Build a software platform to
run Smart Grid applications and
demonstrate it through selected
applications

• This software platform defines:
– Programming model (for distributed

real-time software)
– Services for

• Time synchronization
• Messaging middleware
• Robust consensus and

coordination
• Secure discovery and deployment
• Fault-detection and recovery
• Distributed security

– Development toolkit (for building
and deploying apps)

• Uniqueness:
– Focus on distributed applications

not only on networking
– Focus on resilience – fault recovery
– Focus on security – maintain

confidentiality, integrity, availability

Supported, in part, by ARPA-E and Siemens CT

RIAPS: Middleware for Decentralized Computing

Page 11

RIAPS: Middleware for Decentralized Computing

Loosely connected componentized
applications are important for
portability, interoperability,
modularity & maintainability

Page 12

RIAPS: Middleware for Decentralized Computing

Distributed Applications

https://riaps.isis.vanderbilt.edu

Page 13

Fault management
 Assumption: Faults can happen anywhere:

application, software framework,
hardware, network

 Goal: Developers must be able to develop
apps that can recover from faults
anywhere in the system.

 Use case: An application component
hosted on a remote host stops
permanently, the rest of the application
detects this and ‘fails over’ to another,
healthy component instead.

 Philosophy: The platform provides the
mechanics, but app-specific behavior must
be supplied by the app.

RIAPS: Middleware for Decentralized Computing
Steps Towards Resilience

9/6/2017

Page 14

Distributed Coordination

 The need: Reusable distributed
coordination algorithms implemented
in the framework

 Use case: Nodes implementing a
microgrid controller need to
dynamically form a group for the
purpose of disconnecting from the
main grid. They need to reach
consensus on the future point in time
when the disconnection happens.

RIAPS: Middleware for Decentralized Computing
Steps Towards Resilience

9/6/2017

Page 15

Distributed coordination
 Group membership

 During run-time, application components can dynamically generate and
form a group

 Features: communication among group members, tracking membership
changes

 Dynamic group membership is maintained by the service in a fault-
tolerant manner

 Leader election
 Group members start a leader election process that results in a leader
 When the leader drops out (fails or leaves the group) a new leader will be

elected
 Members are notified about leadership changes

 Consensus
 Nodes attempt to reach agreement on a value, submit proposals
 Each node can accept or reject the proposed value of the other nodes
 The process stops when nodes reach consensus

 Time-synchronized action
 Nodes are to execute a coordinated (control) action in the future
 Each application component schedules an operation for itself
 Fault tolerant, high-precision time synchronization service ensures that

the operation is executed at the right time, on all nodes involved

RIAPS: Middleware for Decentralized Computing
Steps Towards Resilience

9/6/2017

Page 16

Security features

 Secure deployment and application management

 Secure interactions with control nodes

 Strong, cert-based authentication on everything

 HW-based root of trust in the platform

 Secure communications

 Secure messaging among application components

 Secure discovery service

 Secure information flows: process separation, isolated file
systems

 Security management

 Monitoring and logging

 Renewable security

RIAPS: Middleware for Decentralized Computing
Steps Towards Resilience

9/6/2017

Page 17

 A robust software platform is essential for implementing resilient
systems

 The platform should provide features and services for
 Fault management
 Distributed coordination
 Security defense and mitigation

 Application examples:
 Microgrid Control
 Remedial Action Schemes
 Transactive Energy
 Distributed SCADA
 Real-time Analytics

 Development is in progress, early demonstrations are available

Summary and Future Work

9/6/2017

