

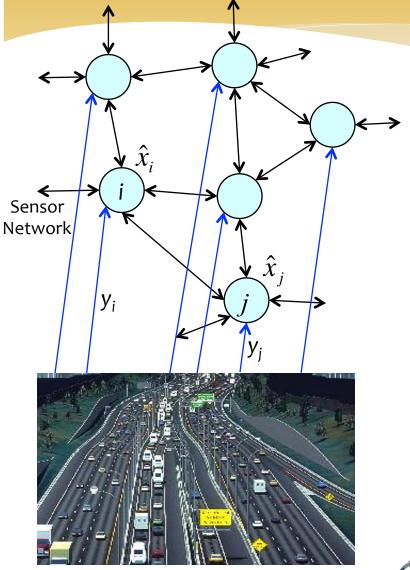
Resilient Monitoring and Control of Distributed Cyber-Physical Systems

Xenofon Koutsoukos

Waseem Abbas, Sajal Bhatia, Anirban Bhattacharjee, Aron Laszka, Goncalo Martins, Abhishek Dubey

Gabor Karsai, Janos Sztipanovits, Yevgeniy Vorobeychic

Vanderbilt University/ISIS

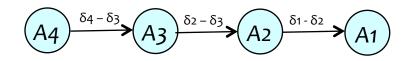


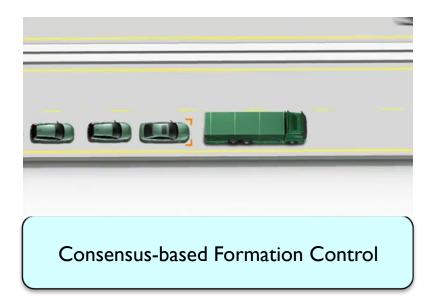
Distributed Parameter Estimation

All sensors measure independently some physical phenomenon with some error due to noise $y = \theta + y$, $y \approx N(0, \sigma^2)$, i = 1, 2, ..., n

$$y_i = 0 + v_i, v_i = 0 + (0, 0_i), i = 1, 2, ..., n$$

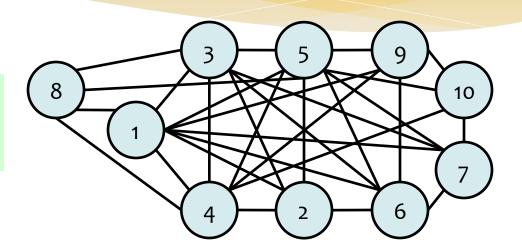
The sensors improve their estimate b


- The sensors improve their estimate by averaging the measurements
- Minimum variance estimate


$$\hat{\theta}_{MV} = \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sigma_i^2} y_i}{\frac{1}{n} \sum_{j=1}^{n} \frac{1}{\sigma_j^2}}$$

 It can be asymptotically computed in a distributed fashion using two average consensus algorithms in parallel

Distributed Control of Multi-Agent Systems



- Distributed consensus
 - Each vehicle updates its state based on the states of its local neighbors
 - * The final state of each vehicle converges to a common value
- Distributed Consensus Applications in CPS
 - * Vehicle rendezvous
 - * Formation control
 - * Parameter estimation
 - * Least squares data regression
 - * Sensor calibration
 - * Time synchronization
 - * Kalman filtering

Resilient Consensus in the Presence of Adversaries

(3,2)-robust graph: resilient consensus in the presence of 1 adversary

- * Adversarial Consensus Protocol
- * Adversary models
 - * Threat
 - * Scope
- * Robust network topologies
 - * Local redundancy

- Resilience requires high degree of redundancy
- * Can we relax the redundancy requirements?

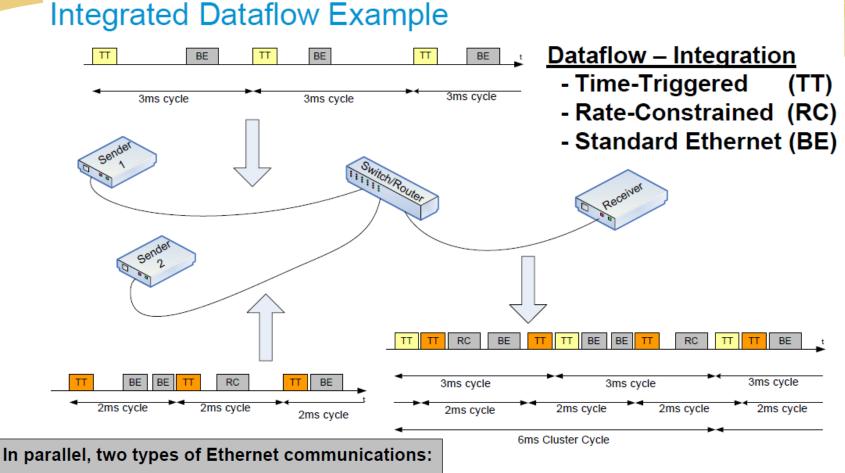
Overview

* Performance Impact of Authentication in Time-Triggered Networked Control Systems

- Theoretical analysis of performance impact
- Experimental validation
- * Resilient Consensus Protocols with Trusted Nodes
 - * Connected Dominating Set
 - * Trusted Nodes and Network Robustness
- * Stochastic Message Authentication
 - * Game Theoretic Model
 - * Trade-off Between Computation and Security

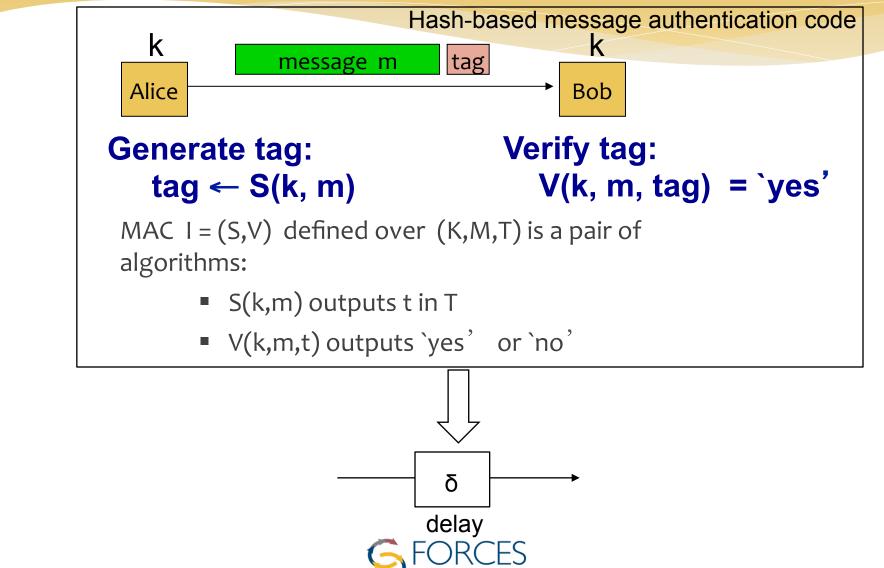
* Conclusions

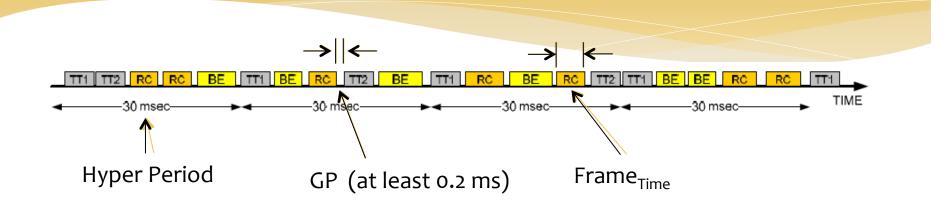
Overview


* Performance Impact of Authentication in Time-Triggered Networked Control Systems

- Theoretical analysis of performance impact
- Experimental validation
- * Resilient Consensus Protocols with Trusted Nodes
 - * Connected Dominating Set
 - * Trusted Nodes and Network Robustness
- * Stochastic Message Authentication
 - * Game Theoretic Model
 - * Trade-off Between Computation and Security

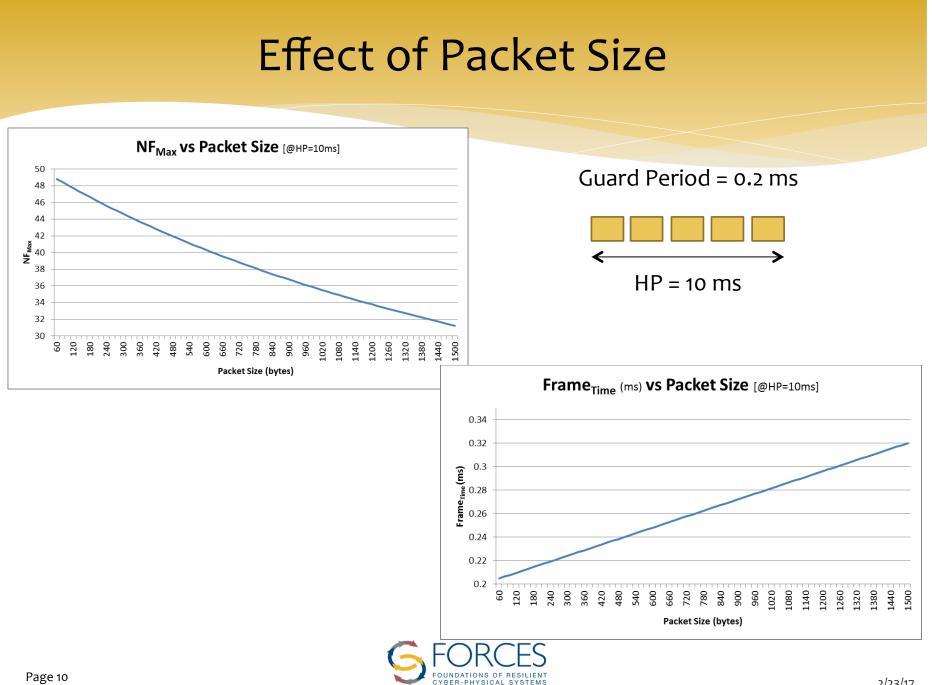
* Conclusions


Time-Triggered Ethernet Overview


- Synchronous (TDMA-style) Communication: TT
- Asynchronous (event-triggered style): RC + BE

Protected Message Transmission

Analysis of Performance Impact

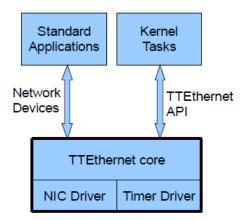

Max Number of Frames per Hyper Period (NF_Max)

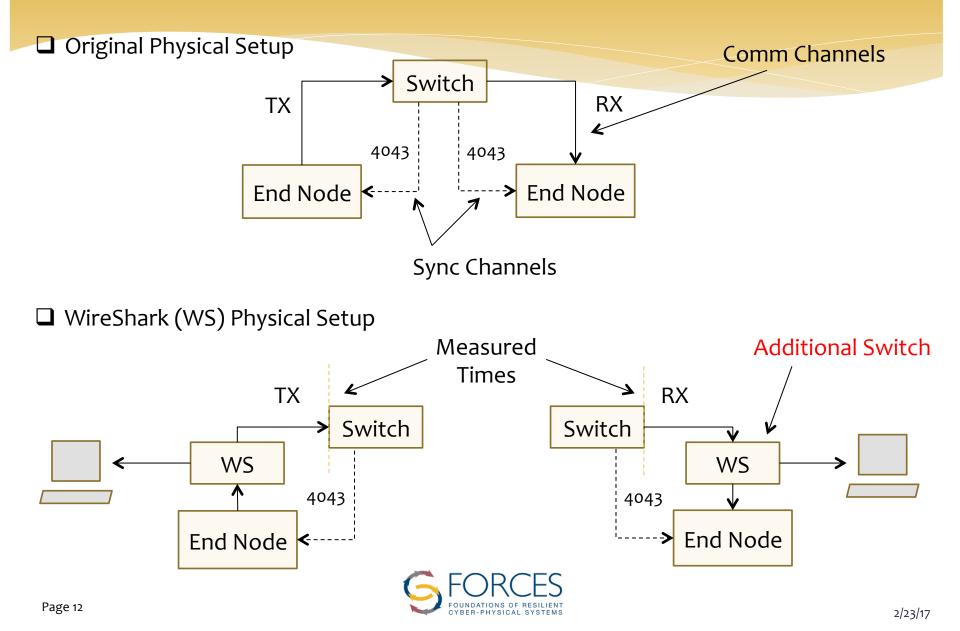
$$NF_{Max} = \frac{HP}{(Frame_{Time} + GP)} \qquad Frame_{Time} = \frac{Packet_{Size}}{Transmission_{Rate}}$$

• Example:

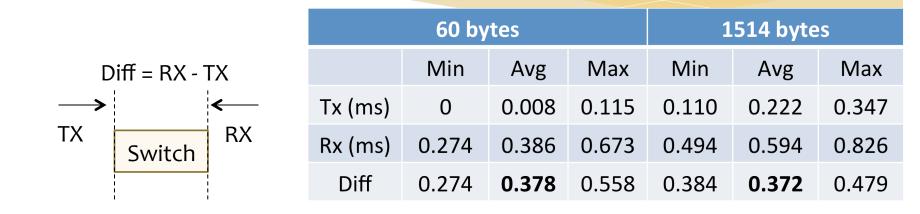
$$NF_{Max} = \frac{10 \ (ms)}{\left(Frame_{Time} + 0.2 \ (ms)\right)} \approx 48 \quad Frame_{Time} = \frac{60 \ (bytes)}{\left[\left(100 \ (Mbits)/8\right)\right] \left(\frac{bytes}{s}\right)}$$

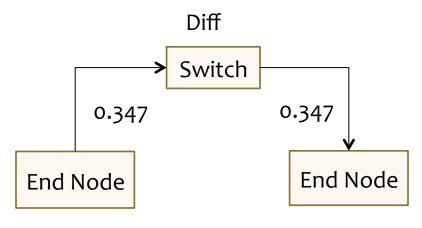
Hardware Platform: IBX-530W




Figure 1: Structure of a TTEthernet end system

- Intel Atom
 Processor, 1.6GHz
- * Linux 2.6.24-24-rt kernel
- * Crypto library



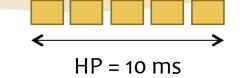


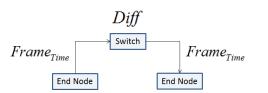
Impact on System Performance

Experimental Results (WireShark)

□ Max Total Transmission Time (Max_{TTT}) $Max_{TTT} = (2*Frame_{Time}) + Diff$ (0.347 * 2) + 0.375 = 1.069 ms With WirelessShark Switch (0.347 * 2) + 0.2 = 0.894 ms

With assumed GP




Comparison

TTTech – TDMA Theoretical Results

Guard Period = 0.2 ms

Theoretical Values						
	60 Bytes	80 Bytes	1514 Bytes			
NF _{Max}	48	48	31			
Frame _{Time} (ms)	0.0048	0.0064	0.12			
Max _{ttt} (ms)	0.2096	0.2128	0.44			

□ TTTech – TDMA Hardware Results

$Max_{TTT} = (2$	* $Frame_{Time}$) + $Diff$
1514 Bytes	GP

Hardware Values						
	60 Bytes	80 Bytes	1514 Bytes			
NF _{Max}	23	20	11			
Frame _{Time} (Tx _{Max}) (ms)	0.115	0.150	0.347			
Max _{ttt} (ms)	0.43	0.5	0.894			

Experimental Analysis: Conclusions

- The overhead time introduced by the kernel module implementing HMAC reduces the effective number of frames per hyper-period (HP)
- There is a small impact on the maximum number of frames per HP by increasing the packet size from 60 to 80 bytes (tag)
- * Experimental results are consistent with the theoretical analysis
 - Overhead time spent by the kernel module to transmit data to the physical medium is not considered by the theoretical analysis

Overview

 Performance Impact of Authentication in Time-Triggered Networked Control Systems

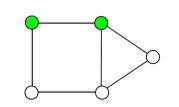
- * Theoretical analysis of performance impact
- * Experimental validation

* Resilient Consensus Protocols with Trusted Nodes

- * Connected Dominating Set
- * Trusted Nodes and Network Robustness
- * Stochastic Message Authentication
 - * Game Theoretic Model
 - * Trade-off Between Computation and Security

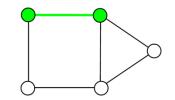
* Conclusions

Resilient Consensus Protocol with Trusted Nodes


Under RCP-T, consensus is always achieved in the presence of *arbitrary number of adversaries* iff there exists a set of trusted nodes that form a **connected dominating set**

Under RCP-T

- Any number of attacks can be handled
- Sparse networks can be made resilient

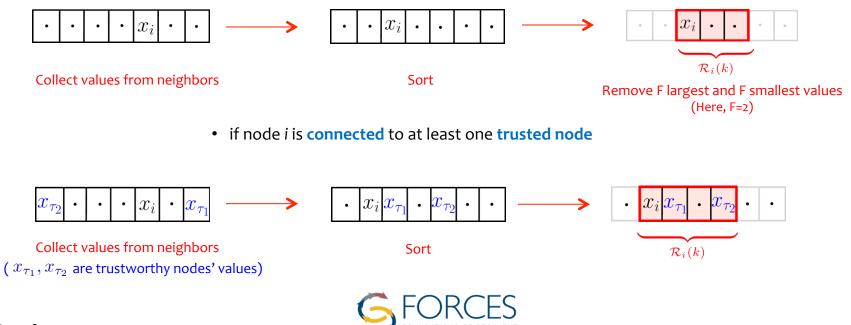

Dominating Set:

$$D \subseteq V$$
, s.t. $\bigcup_{v_i \in D} \mathcal{N}[v_i] = V$

Connected Dominating Set:

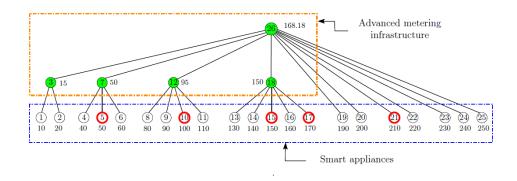
Nodes in the dominating set induce a connected subgraph

Resilient Consensus Protocol with Trusted Nodes (RCP-T)

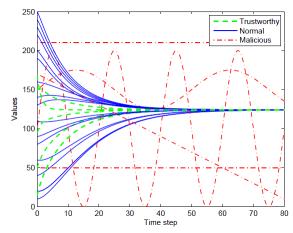

Each normal node updates its value according to the following update rule

$$x_i(k+1) = \sum_{j \in \mathcal{R}_i(k)} w_{ij} \ x_j(k)$$

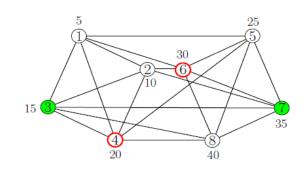
What is $\mathcal{R}_i(k)$?

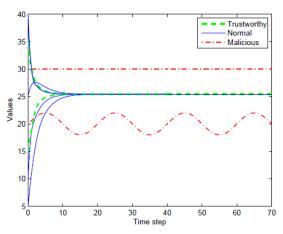

• if node *i* is **not connected** to any trusted node

(F is the total number of attacks that can happen within the network)



Examples


Example 1: (Tree – Sparse network)


RCP-T

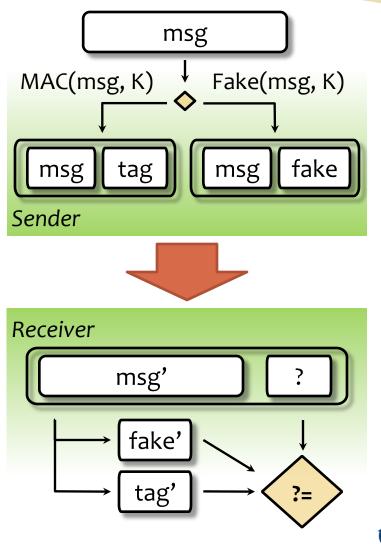
Example 2: (2,2) Robust graph

RCP-T

[Abbas et al., ISRCS 2014, Submitted]

Overview

- Performance Impact of Authentication in Time-Triggered Networked Control Systems
 - * Theoretical analysis of performance impact
 - * Experimental validation
- * Resilient Consensus Protocols with Trusted Nodes
 - * Connected Dominating Set
 - * Trusted Nodes and Network Robustness
- * Stochastic Message Authentication
 - * Game Theoretic Model
 - * Trade-off Between Computation and Security
- * Conclusions



Motivation

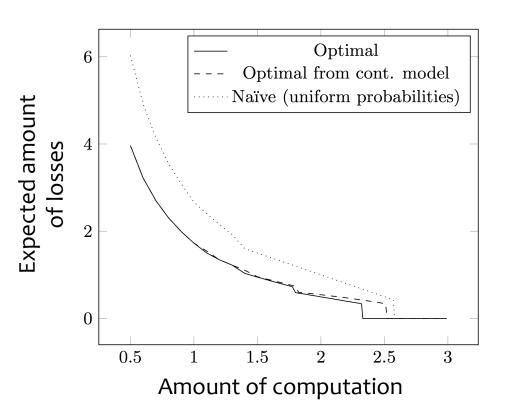
- * Computational demand of cryptographic primitives can be too high for **resource-bounded** devices
 - legacy devices in supervisory control systems
 - * embedded or battery-powered devices (RFID tags, sensors)
- * "Lightweight" cryptographic primitives
 - * Decision to secure a system is still **binary**: either security is employed, incurring some fixed overhead, or it is not
- * Our approach: General-purpose framework for trading off security and computational resources using an existing MAC scheme

Stochastic Message Authentication

- For some messages, the sender computes a "fake tag", which is computationally less demanding, but does not protect integrity
- Adversary cannot distinguish fake tags from correct tags
- Receiver can verify if a message has a fake or a correct tag efficiently
 - \rightarrow detect attacks with high probability

Game-Theoretic Model

* Stackelberg security game


* Divide messages into C classes based on their potential to cause damage

		Defender	Attacker
Strategy choice		for each class c , the probability of authentication p_c	for each class c, the number of modified / inserted messages a _c
Detection probability		1 - ∏(1 - p_c) a_c	
Payoff	attack undetected	- (amount of total damage $\sum a_c L_c$)	amount of total damage $\sum a_c L_c$
	attack detected	zero	"punishment" -F

Results

Trade-off between computation and security

Proof-of-concept implementation using SHA-1 HMAC on an ATmega328P microcontroller

[Laszka et al., CCS 2014, Submitted]

Conclusions

- Resilient Distributed Consensus Protocols in the Presence of Adversaries
 - Exploit local information redundancy
- * Performance Impact of Authentication Mechanisms
 - * Theoretical analysis and experimental validation
- Resilient Distributed Consensus Protocols with Trusted Nodes
 - Trusted nodes form a connected dominating set
- * Stochastic Message Authentication
 - * Trade-off between computation and security

