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Motivation and Challenges

Key issues in power networks
» Physical coupling of power flows according to Kirchhoff’s laws
» Cannot effectively be directly controlled

» Power companies/transmission operators possess private cost
functions and network topology information

» Structural changes in the power industry

Vertically-integrated, Decentralized,
Monopolistic Competitive

These changes highlight the issue of asymmetric information.
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Problem

Consider a network of power system operators, termed Regional
Transmission Operators (RTOs), which each own a collection on nodes,
termed buses.

Each RTO contains buses and consumption buses, connected
through a finite-capacity network.

Each RTO only has localized knowledge about the complete system.

» We wish to determine the optimal power trades between RTOs in
order to minimize the sum of RTO’s costs under the localized
knowledge assumption.
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» Each bus i € A\¥ has an associated (strictly increasing, convex) cost
function, c¥(p)

» If p > 0, c¥(p) represents generation cost
» If p <O, cf? (p) represents negative consumption benefit

» Flows are constrained

» RTOs are non-strategic
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The Physical & Network Constraints

Intra-RTO; flow between buses i and j, g(ij), and power trade between
RTOs, h(Gf‘]l) defined as

RTOy,

/
-

\ AT ENE

1 1 k_gly2
8(0fy) : = By (6 — ) + S Gi;(0f —07)*  h(6f)) : = Bij (6] —0}) + - Gy} (6 —6))

All (bidirectional) flows are constrained

GO <Sh ) <Sh e st nek) < sk
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The total required real power injected, P; (9 ) into a bus is equal to the
power flowing from the bus fo neighboring buses given by

POg) = Y s®)+Y Y h(ef)

JERFNA* lest jeRina(’

Thus, RTOy’s (strictly convex) cost is

Glow) = L <t (7 (o))

ienk
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Centralized Information Problem

Assume there is some entity that has complete knowledge of the system.
It would determine the optimal profile of voltage angles 0 via

rnein C(0) =Y Ci(B41) (Fc)
ke

subjectto 0€ @ := {9 Gk <6k <6,J,z€f7\[k

g(ef]> = l]?g(ek) <Sk

ﬂ? (l7j) E Zk’

h(Bf]) < Si, h(0%) < S (i,j) € E¥ 1€ S5k e 9\[}
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Each RTOj knows

» (I1) The cost functions of the buses within their own region.

» (I2) The physical parameters of lines in, and immediately
connected to, their region.

» (I3) The angle stability bounds of the buses in, and immediately
neighboring, their region.

@ FORCE

TEMS




Decentralized Information Problem

The informational constraints impose additional restrictions on the
problem.

min C(0) = Z Ck(OKk) (Pp)
6 ke
subjectto 0 € @®
amt), (12), I3) (Localized info.)

We aim to design an operational rule to find the optimal solution of
Problem (Pp) which is the solution to Problem (P¢).




Solution Methodology - Local Public Goods

» We approach the problem using ideas from microeconomic theory

» Neighboring angles of bus i completely define how much bus i
consumes/generates and its corresponding utility (localized
externality effects)

Local public good <> Localized externality effects

» Regional level generalization: Each RTO proposes the voltage
angles of all of its own buses and the angles of the buses
immediately neighboring its region

» Under our algorithm, agents eventually agree upon the socially
optimal set of voltage angles.
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Step 0: Initialization

Set n = 0. Every RTOy, k € A, agrees upon:
A0

» An initial angle vector 8~ € ©.

» A sequence of nonincreasing, bounded parameters, {1:(") }::1
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Step 1: Optimization and Broadcast

At the n™ iteration, each RTOy, computes their oprimal (n+1)*
proposal:

= (n+1) ‘ ’99{'6 _ é%)c :
By = argmin Ci(04) + T)Z

Oxk EQKI(

and broadcasts parts of their solution to their neighbors.
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tep 2: Averaging e —

Each RTOy, computes averages of propositions

Z251,(n)

8 — 9”%
TON e KON RTO,: oy -
U TR g _ 804810
e(n) % égal,(n) ’ :
9‘1‘%2( n) éf{') o o = elﬁuz) g
x g X RTO,. o =6
gl g g2 o = B
a1=3,(n)  72-3.(n) & (n)
5, & % a1-3.n)  523.(n)  5(n)
é;_)a,(n) % één) @%") _ %
&(n) R gl—=3.(n)_ 5ln)
% % 8y RTO:,. ol = M
egn) _ egn)

Increment the iteration by setting n = n+ 1 and return to Step 1.
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Convergence is achieved asymptotically but we also need to ensure
optimality.

To do this, each RTO computes a weighted average:

(nt1) thll

wﬂ(]‘ T Zn—i—l
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wi*l(") wfl") 0 wiﬁzv* o 0
wm — 0 w™ 0 —_ W = 0 ws 0

wéﬁz,(n) wén) o2 wﬁi—*z,* ;dé; wg—&,*

3% -3,
w;_ﬁ,(n) w?ﬁ&(n) w;n) ng ) ws w?
wp 0 w s 0 wg
0 0 ""s()") L 0 0 w; |

The vector w* = (W}, w5, w3, w., ws, w,, w7, wg.wg) is the solution to the
centralized information problem, (P¢).
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hree RTO system, each with 2 buses.
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Conclusion & Future Work

» Designed an operational rule, when under asymmetric information,
the decentralized optimization obtains the same solution as the
centralized optimization

» Take-away message: choice of decision variable determines the
amount of information exchange required to obtain the optimal
solution

Future work:

» These algorithms are slow; future work involves increasing
efficiency

» Currently working on the extension to strategic entities
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Lemma: Bach RTO’s aggregated cost, Cr (04 ),

a9 convex
in 9 Rk

For i € \¥, define the matrix A}.C e RIRIXIR

i} - .
eiT e[gcﬂl
e —e —
A;{ _ ! . [R-i'c]Z
T _ ol
] €T Rl

k .
where e € RIZ1=1 are the standard basis vectors.




Proof.

Now, construct the matrix

1
A
Ay

Ak — e REIRIDXIRY

Ni+1
Ak

Remove the S}Ch column of Ay, to form the matrix Ay, € R ‘Kﬂ)x(lﬁkl_l).

This is due to the fact that the si* column corresponds to Gfk, which takes

on the reference value Gls‘k = 0. Note that the resulting matrix is of full
rank, rank(A;) = |R*| — 1.
Define the composition Cy = By o Ay and perform the change of variables

L
0" = ABgn 5y

D o
:




Proof.

We now show the strict convexity of By (%) in ¢*.
The vector of ¢k represents the angle differences within and
immediately neighboring RTOy. Due to the functional form of the

power flow equations, the variables ([)le_ = (])[gm1 , (I)[le_]z, ,q) \R"

the arguments of ci-‘ appear as positively weighted sums of linear and
(element-wise) squared terms (a strictly convex function). By
assumption, each cﬁ-‘ is strictly increasing and convex. Since the
composition of a strictly increasing, convex function and a strictly
convex function is strictly convex [S. Boyd and L. Vandenberghe, 2004],
the restricted maps below are strictly convex.

Oxs > o (£ (0ns) ) i€ NG
Ogr — o (fz (¢g{f)) i€ N




e —
d(0ge) =k (£ (0ns) ) i€ NAAG
df(0ge) =k (fi(0xs) ) i€ AG

By construction, each d,l‘((l)g{k), i€ A\AK, and di(Qgi), i € NE, s
convex in ¢«. Observe

Bi(@g:) = ieNzkiM; o ( (0x)) + iezg:\& (i (0x1))

= Z dzk (%{k)
icNk
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Letx #y, A€ (0,1), then for all i € A

dE (x4 (1= L)y) < MdE(x) + (1 —A)d¥(y) (1)

Since x # y, then x,, # y,, for at least one p, so at least one of the Ny + 1
inequalities in (1) is strict. Since Bi(dzi) = Y dt (¢g«) we have
icNk

BeOx+ (1= A)y) < ABi(x) + (1 —M)Bily) @)

This establishes the strict convexity of By (¢x«) in ¢ . Since A is a
linear transformation of full-rank, we equivalently have that Cy(04x) is
strictly convex in @ .

O
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Model allows for constraints on power injections fik(O._,i;;) € [M¥ M.

Can be approximated by the following convex inequalities

=Y g(6}) <M and ) g(6%) <M,
jeRrk jeRrk
Notice that
{00 ¥ s0%) <mt} c {o| ¥ g(0) >t}

jeRrk jeRk
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Let hf(egti;) be the power consumption at bus i € ned as

ea{’c Z [g )]

JERK
= X (B0 6) + G105 — 017 — Gl 05 - o)
JER;

_ Z[ Bk ek ek __Gk (ek 9]]()2]
jERK

= Z g(® fz ey(k)

jeERk

...a concave function in 0 z+.
1
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