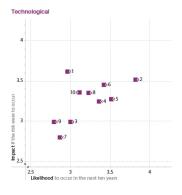


Managing risks in large scale interdependent CPS.

(based on joint work with Aron Laszka and Shankar Shastry)

Galina Schwartz Dept. of Electrical Engineering & Computer Sciences, UC Berkeley, CA, USA



Global interconnectedness → IDS nature of CPS risks Cyber Risks: the Findings (based on Global Risk Reports)

- MIT Forum and Infosys Risk Group, survey based MIT Global Risk Survey, 06-2016
 - 92.54 percent of companies: the nature of risk is changing [due to complexity in the digital economy]
- World Economic Forum [WEF], expert based World Economic Forum, Global Risk Reports, yearly
 - Technology: highly varied expert opinions illustrated on the next slide

1	Critical systems failure	Single-point system vulnerabilities trigger cascading failure of critical information infrastructure and networks.
2	Cyber attacks	State-sponsored, state-affiliated, criminal or terrorist cyber attacks.
3	Failure of intellectual The loss of the international intellectual property regime as property regime effective system for stimulating innovation and investment	
4	Massive digital Deliberately provocative, misleading or incomplete informat disseminates rapidly and extensively with dangerous consequences.	
5	Massive incident of data fraud/theft	Criminal or wrongful exploitation of private data on an unprecedented scale.
6	Mineral resource supply vulnerability	Growing dependence of industries on minerals that are not widely sourced with long extraction-to-market time lag for new sources.
7	Proliferation of orbital Rapidly accumulating debris in high-traffic geocentric orbits debris jeopardizes critical satellite infrastructure.	
8	Unforeseen Attempts at geoengineering or renewable energy consequences of climate development result in new complex challenges. change mitigation	
9	Unforeseen The manipulation of matter on an atomic and molecular leve consequences of nanotechnology	
10	Unforeseen consequences of new life science technologies	Advances in genetics and synthetic biology produce unintended consequences, mishaps or are used as weapons

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CPS risks assessment in the era of internet of things I

Pending questions

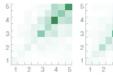
- How to measure?
- How to quantify?
- How to manage?
- At present:
 - cyber risks assessment is based on expert opinions
 - data is scarce
- Our task:
 - to develop sound valuation of CPS risks (statistics)
 - to take into account strategic nature of attacks (game theory)

Critical systems Cyber attacks failure Failure of Massive digital intellectual misinformation property regime

Mismanaged urbanization

Irremediable

pollution


A

extreme weather

Rising greenhouse

Species overexpl

Massive incident fraud/theft

of data

Mineral resource supply vulnerability

Persister

Land and

waterwa mismana

Modeling risks in infrastructure CPS I

Plan of the talk

- IDS: the main idea of the approach
- IDS model with discreet security choice
 - 2 player game
 - nonatomic players: identical and differing by security costs
 - Results:
 - Multiple equilibria could exist.
 - Present the tools of steering the system to superior equilibrium.
- IDS model with continuous security choice
 - atomic and non-atomic games
 - strategic attackers and defenders
 - endogenous player types (players choose their types)
 - Results:
 - Individually optimal security (Nash) differs from social optimum
 - Suggest the tools to shrink the inefficiency
- Novelty: we model IDS in large scale networks with strategic players
 - player choices are continuous
 - Iarge scale IDS risks
 - strategic defenders
 - strategic attackers
 - network topology

Motivating Example: Attacks on electronic road signs

Dallas, TX, Interstate 30: Memorial day highway pranks

Saturday [May 28, 2016]

Tuesday morning [May 31, 2016]

・ロット (雪) (日) (日) (日)

Multiple attacks across USA.

http://www.worldwideinterweb.com/4812-funniest-hacked-traffic-signs/

My talk: Risk evaluation and management with interdependent security [IDS]

DOTs are shifting to electronic road signs

Texas Department of Transportation [TxDOT]

Dynamic messaging signs [DMS] "reduce confusion and increase safety"

(日) (日) (日) (日) (日) (日) (日)

Electronic road signs

From theory To practice

Tweaking of safety messages could lead to injuries or even deaths on the road. ... Third-degree felony (min 2 year sentence)

[TxDOT spokesman] Source: http://abcl3.com/news/hackers-leave-quirky-messages-on-road-signs/1364333/

How to evaluate and manage the risks?

(日)

History of DMS (in)security: hacking remotely

Instructions: hacking DMS made by Daktronics [By SunHacker (2014)]

Sources: Security News, Brian Krebs Security Blog, Center for Internet Security (CIS) on malicious targeting of DMS

- Change the lan of VPN to INTERNET protocol
- Scan all the range of the IP on port 23
- Bruteforce the password (download scripts)
- Access the control panel; add your message

DHS alert: All Daktronics DMS

- Have the same default password
- Allow remote access to the control panel

くロト く得ト くほト くほう

Remote access (to control panel) \iff attacks may propagate indirectly [brave new world]

Electronic highway signs: hacking manually

Signs secured by (Buyers Barricades) [05-28-2016]. Turned off & locked (no remote access). TxDOT spokesman: Bold hacker(s) needed to:

- Power up the signs
- Break the password
- Manually alter the message via the control panel Source: http://www.techworm.net/

2016/05/hacked-road-sign-texas-highway-says-trump-shape-shifting-lizard.html

No remote access ↔

Indirect attacks are impossible [old world (no network effects)]

Prob. of breach with interdependent security [IDS]

No remote access \iff no indirect attacks q = 0 [old world]

Remote access \iff indirect attacks q > 0 [IDS]

■ prob. of breach B [basic IDS], Kunreuther & Heal [2003], Hofmann [2007,2011]

$$B = P(d) + P(i) - P(d \cap i) = p + q(x) - pq(x) = p + (1 - p)q(x)$$

■ *p* - prob. of direct loss; q > 0 - prob. of indirect loss \Leftarrow important ■ *x* fraction of insecure nodes, q(x) > 0, q'(x) > 0, q(0) = 0, $q(1) = \bar{q} < 1$

$$B_i(p_1,...,p_n) = 1 - s_i \prod_{j \neq i}^n (1 - (1 - s_j)q_{ij}), \ s_i = 1 - p_i$$

p_i - prob. of direct loss; $q_{ij} \ge 0$ - prob. of indirect attack from node j to i

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Further motivating examples: infrastructure CPS and Internet of things

Smart, Networked, Interconnected = IDS [q > 0]

Electric grid

- smart meters reprogramming
- remote alteration of customer records
- Auto safety trade-offs: remote updates remote exploits
 - car owner: altering engine electronics (improved performance, higher emissions)
 - extortion of a car owner (via hacking smart auto software)
- Connections between infrastructures: (ex. Nest thermostat)

http://www.tomsguide.com/us/nest-weave-smart-home,news-21658.html

The size of *q* reflects

- network topology
- degree of interdependence
 [more interdependent = higher q]

Network Topology and IDS

Examples

ideosyncratic

fully connected

single-factor model

Erdös-Rényi graph

Network Topology and IDS

Examples

ideosyncratic	fully connected	single-factor model	Erdös-Rényi graph
hardware failure	email spam	OS vulnerability	inter-organizational dependence

<ロ> <四> <四> <三> <三> <三> <三> <三

Basic IDS model and beyond

IDS \iff Indirect attacks q > 0

Discreet security choice, N or S. (nonatomic players)

Prob. of direct breach p and of indirect q; x - fraction of insecure nodes; q'(x) > 0, q''(x) > 0, q(0) = 0, $q(1) = \bar{q} < 1$

$$B_N = p + (1 - p)q(x)$$
 and $B_S = q(x)$

Continuous security choice (atomic and non-atomic (finite) players)

 p_i - prob. of direct loss; $q_{ij} \ge 0$ - prob. of indirect attack from node j to i

$$B_i(s_i, s_{-i}) = 1 - s_i \prod_{j \neq i}^n (1 - (1 - s_j)q_{ij})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Notation and Player objectives: Binary security decision

s state
$$s = \{S, N\}$$
 (Secure, Not secure)

p prob. of direct loss

prob. of indirect loss
$$q'(x) > 0$$
, $q''(x) > 0$, $q(0) = 0$, $q(1) = \bar{q} < 1$

W initial wealth

L size of a loss

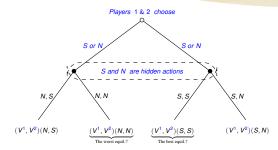
$$U(w)$$
 agent's utility with wealth w ; $U'(\cdot) > 0$; $U''(\cdot) < 0$

 c_i player *i* cost of self-protection for s = S (p = 0)

$$V(x, c_i) = \max_{s \in \{S, N\}} p[1 - I_s] \underline{U} + (1 - p[1 - I_s]) \times \{q(x)\underline{U} + (1 - q(x))\overline{U}\} - c_i I_s,$$

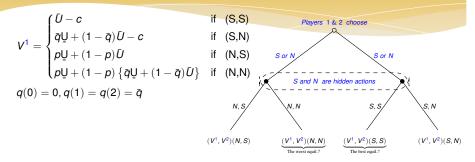
$$\bar{U} := U(W); \quad \underline{U} := U(W - L); \quad I_s = \begin{cases} 1 & \text{if } s = S \\ 0 & \text{if } s = N \end{cases}$$

With no self protection


$$V(x) = p\underline{U} + (1-p) \left\{ q(x)\underline{U} + (1-q(x))\overline{U} \right\} \text{ if } s = N$$

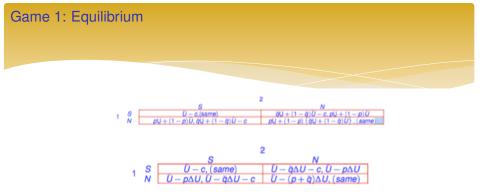
With self-protection (p = 0):

$$R(x, c_i) = q(x)\underline{U} + (1 - q(x))\overline{U} - c_i$$
 if $s = S$


Both nodes (players) simultaneously decide to secure(S) or not(N)

$$V^{i} = B_{s} \underline{U} + (1 - B_{s}) \overline{U} - cI_{s}, \text{ where } B_{s} = \begin{cases} p + (1 - p)q(x) & \text{if } s = N \\ q(x) & \text{if } s = S \end{cases} \text{ and } I_{s} = \begin{cases} 0 & \text{if } s = N \\ 1 & \text{if } s = S \end{cases}$$

Game 1: Two identical players: secure or not?


Theorem

There exists an equilibrium of the game. At most, there exists 2 equilibria: (S,S) and (N,N). Then:

- If a player believes that another player is secure, he will secure. \iff equil. (S, S)
- If a player believes that another player is insecure, he will not secure ⇔ equil. (N, N)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$q(0) = 0, q(1) = q(2) = \overline{q}, \Delta U = \overline{U} - \overline{U}$

Theorem

There exists an equilibrium of the game. At most, there exists 2 equilibria: (S,S) and (N,N). Then:

- If a player believes that another player is secure, he will secure. ↔ equil. (S, S)
- If a player believes that another player is insecure, he will not secure \u00e9 equil. (N, N)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Game 2: Nonatomic identical players: secure or not?

$$V = \begin{cases} q(x)\underline{U} + (1 - q(x))\overline{U} - c & \text{if } (S,q(x)) \\ p\underline{U} + (1 - p) \left\{ q(x)\underline{U} + (1 - q(x))\overline{U} \right\} & \text{if } (N,q(x)) \end{cases}$$

Theorem

There exists an equilibrium of nonatomic game with identical players, and it is symmetric: (S,S) or (N,N). If

$$q(x) \leq 1 - rac{1}{[\overline{U} - \underline{U}]} rac{c}{p}$$

everyone invests in self-protection.

Corollary

Let there exists $x^* < 1$, s.t.:

$$q(x^*):=1-\frac{1}{[\bar{U}-\bar{U}]}\frac{c}{\rho}.$$

Then, (S, S) will be socially efficient equilibrium. Let there be common knowledge that some fraction of population x_b believes that others do not invest in self-protection. If $(1 - x_b) > x^*$, then (N, N) will be an equilibrium supported by such beliefs.

Game 3: Nonatomic players with different security costs

 $\begin{array}{ll} c_i & \text{cost of player } i, \, c_i \in [c_{min}, \, c_{max}] \\ F(c) & \text{distribution function of agents' costs of protection} \\ f(c) & \text{density of } F(c) \end{array}$

$$V(x, c_i) = \max_{s = \{S, N\}} p \left[1 - I_s \right] \underline{U} + (1 - p \left[1 - I_s \right]) \times \left\{ q(x) \underline{U} + (1 - q(x)) \overline{U} \right\} - c_i I_s,$$

$$\overline{U} := U(W); \quad \underline{U} := U(W - L); \quad \Delta U := \ \left[\overline{U} - \underline{U}\right].$$

$$V^{i} = \begin{cases} q(x)\underline{U} + (1-q(x))\overline{U} - c_{j} & \text{if } (\mathsf{S},\mathsf{q}(x)) \\ p\underline{U} + (1-p) \left\{ q(x)\underline{U} + (1-q(x))\overline{U} \right\} & \text{if } (\mathsf{N},\mathsf{q}(x)) \end{cases}$$

Proposition

For any q(x), a player with a cost c_i invests in self-protection if $c_i \leq p(1 - q(x))\Delta U$.

Theorem

Generically, in Nash equilibrium there exists c^* , such that players with $c < c^*$ invest, and with $c \ge c^*$ - do not invest in self-protection. Socially optimal cut-off c^{so} for investing in self-protection is strictly higher than the individually optimal one: $c^{so} > c^*$.

IDS with continuous actions: capturing the tradeoffs

Modeling defender incentives

Costs of security h(s)

- monetary [non-separable utility]
- time or effort [separable utility]

Modeling attacker incentives

- Costs of attacking [c_j]
 - monetary (equipment)
 - know-how (skills)
 - time and/or effort

Costs of being caught

- prob. of punishment [µ]
- severity of punishment $[U(w_0) = 0]$

Benefits of security

- reduced prob. of a breach $B_i = B_i(\mathbf{s})$
- reduced size of a loss L_i
- Benefits of attacking [G_i]
 - pecuniary
 - savings (time, effort)
 - mental
 - (ex. ideology, social cohesion)
 - ex. Watch-Dogs game ⇒

increased interest in hacking of real DOT systems

https://games.slashdot.org/story/14/06/07/2052241/ report-watch-dogs-game-may-have-influenced-highway-sign-h

Player choices: (i) their types (attacker or defender) and (ii) amount of investment in security (determines sec. level)

Continuous security decisions: Notation and Objectives

n	number of players
Si	player <i>i</i> security
S	state $s = (s_1,, s_n)$
W	initial value (wealth)
L	size of loss
h (s)	security cost function
U(w)	utility of wealth w

player *j* cost of attack prob. of direct loss i indirect loss propagated from j prob. of capture of malicious user $\overset{\mu}{U}(w_0)$ utility if punished $U(w_0) = 0$

Defender objective [to maximize his expected utility V_i]

$$V_i = \underline{U} + (1 - B_i) \cdot \Delta U - h(s_i)$$

с_ј р

q_{ii}

$$B_i(s_i, s_{-i}) = 1 - s_i \prod_{j \neq i}^n (1 - (1 - s_j)q_{ij}); \quad \overline{U} := U(W); \quad \underline{U} := U(W - L); \quad \Delta U := [\overline{U} - \underline{U}]$$

Risk averse players [standard]: $U'(\cdot) > 0$; $U''(\cdot) < 0$ Security cost function [standard]: $h'(\cdot) > 0$; $h''(\cdot) > 0$; h(0) = h'(0) = 0, $h(1) = \infty$. Attacker objective [to maximize his expected utility V_i]

$$V_j = (1 - \mu)U(G_j) + \mu U(w_0) - h(s_j) - c_j, \ G_j(M, \mathbf{s}) = \frac{\sum_{i \neq j} B_i(\mathbf{s})L_i}{M_i}$$

IDS as attack technology

When attack propagation is identical across links: $q_{ij} = q$

$$B_i(s_i, s_{-i}) = 1 - s_i \prod_{j \neq i}^n (1 - (1 - s_j)q)$$

Let q(n)n remains small as *n* increases: $g_{\infty} := q(n)n|_{n \to \infty}$ – small. Ignoring the terms non-linear in *q*:

$$B_{i} = 1 - s_{i} + s_{i}q(n)\sum_{j \neq i}^{n}(1 - s_{j}), \qquad (1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Or

$$B_{i} = 1 - s_{i} + s_{i}q_{n}\left\{ (1 - \bar{s}) - \frac{(1 - s_{i})}{n} \right\}, \qquad (2)$$

where $q_n := q(n)n$ and

$$\bar{s} = \frac{1}{n} \sum_{j=1}^{n} s_j$$

IDS in large networks

In the limit $n \to \infty$ $q_{\infty} := q(n)n|_{n \to \infty}$

$$B_i = 1 - s_i \left[1 - g_\infty + ilde{s}
ight], \;\; ilde{s} := g_\infty ar{s}$$

 $s_i - player i$ security $\tilde{s} - network$ security Objective function of defenders (honest)

$$V_i = \underline{U} + (1 - B_i) \cdot \Delta U - h(s_i)$$

Objective function of attackers (malicious)

$$V_{j} = (1 - \mu)U(G_{j}(M, \mathbf{s})) + \mu U(w_{0}) - h(s_{j}) - c_{j}, \quad G_{j}(M, \mathbf{s}) = \frac{\sum_{i \neq j} B_{i}(\mathbf{s})L}{M}$$

Definition (Nash Equilibrium of the game Γ)

A strategy profile (M, \mathbf{s}) is an equilibrium if there exists no unilateral payoff-improving deviation for any player of any type.

The game $\Gamma(M)$ with a fixed number of attackers

Definition (Nash Equilibrium of $\Gamma(M)$)

Consider the game $\Gamma(M)$ with a fixed number of attackers. A strategy profile $\mathbf{s} = (s_1, \dots, s_N)$ is a Nash equilibrium if for every *i*, s_i is a best response.

Lemma

In any equilibrium of the game $\Gamma(M)$, for each user type, security choices are identical.

Theorem (Unique eq. security levels for each type)

For a given M and $h''' \ge 0$, for each player type equilibrium security $s_i^*(M)$ is unique. It is zero for attackers, and positive for defenders.

Theorem

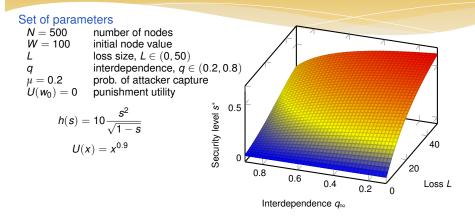
Defender equilibrium security level decreases in the number of attackers.

Equilibrium of the game Γ

Theorem

The game Γ admits at least one pure strategy Nash equilibrium.

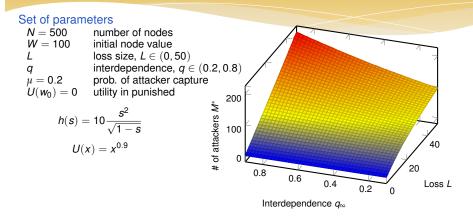
Theorem


Socially optimal security levels s^{so} are strictly higher than the individually optimal security choices in the game Γ : $s^{so} > s^*$.

← Need to design of policies to improve security incentives. IDS framework for large scale CPS:

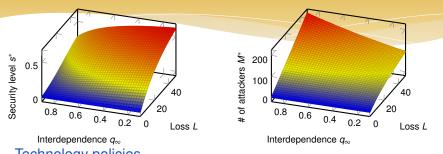
- quantification of policy impact
- comparison across different policies.

Results: Equilibrium security level



Eq. security level s^* as a function of L and q_{∞}

(ロ) (同) (三) (三) (三) (三) (○) (○)


Results: Equilibrium number of attackers

Eq. # of attackers M^* as a function of L and q_{∞} .

Results: Discussion

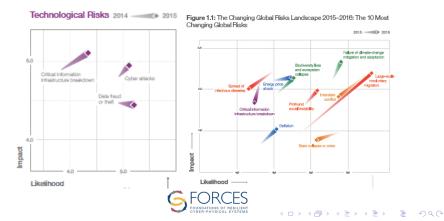
Technology policies

- To promote technologies reducing q_{∞} ?
- To mandate min security level ŝ (required best practices?)

Policies require quantification

[of social costs and benefits based on aggregation of individual risks] IDS framework for large scale CPS provides

- Parameter-based valuation of risks for large scale CPS systems
- Allows to consider strategic defenders and attackers



Conclusion and directions

IDS framework for large scale CPS

- Internet of things requires new tools for risk evaluation & management
- Our IDS framework
 - Evaluates risks for systems with various topologies
 - Allows to design cyber-insurance and assess its effects

Cautious optimism Global risks 2015, Global risks 2016

