

Cellpath: state estimation of traffic networks via convex optimization

Cathy Wu¹, Jérôme Thai¹, Steve Yadlowsky¹, Alexei Pozdnoukhov², Alexandre Bayen^{1,2,3}

¹Department of Electrical Engineering & Computer Sciences, UC Berkeley ²Department of Civil and Environmental Engineering, UC Berkeley ³Institute for Transportation Studies (ITS), UC Berkeley

Route flow estimation problem and formulation

Block simplex constrained quadratic program: analysis and algorithms

Experiments and conclusions

Route flow estimation problem and formulation

Block simplex constrained quadratic program: analysis and algorithms

Experiments and conclusions

The root of all traffic evils

We have little information of what's going on in the road network.

Information

Traditional approaches to traffic flow estimation

This talk: data-driven estimation of route flow

This talk: data-driven estimation of route flow

Our contributions

- Convex optimization formulation for route flow estimation problem¹²
- Formalize cellular network data as cellpaths¹
- Formulation compatible with equilibrium concepts and other data¹
- Projected gradient method with O(n) projection step¹³
- 90% accuracy in numerical experiments on large-scale networks¹
- Proposed framework: full pipeline for traffic estimation¹

¹C Wu, J Thai, S Yadlowsky, A Pozdnoukhov, A Bayen. "Cellpath: fusion of cellular and traffic sensor data for route flow estimation via convex optimization." *Transportation Research Part C: Emerging Technologies* (2015).

²C Wu, A Pozdnoukhov, A Bayen. "Block simplex signal recovery: a method comparison and an application to routing." In review, ACM TIST $\Box \Box R \Box R$

³J Thai, C Wu, A Pozdnoukhov, A Bayen was programming on the l1-ball and on the simplex via isotonic regression." *CDC* (2015).

Problem statement: route flow estimation

Route flow estimation problem

Given

- Road network, origins, cells
- Top routes between OD pairs
- Cellpath flows, f
- OD flows, d
- Observed link flows, b

Recover

Flow along routes, x

Cellpath flow

Flow along a sequence of cells

- Static, noiseless
- Cell partitioning = Voronoi
- Cellpaths contiguous
- Cellpaths well-posed

Problem statement: route flow estimation

Route flow estimation problem

Given

- Road network, origins, cells
- Top routes between OD pairs
- Cellpath flows, f
- OD flows, d
- Observed link flows, b

Recover

Flow along routes, x

Cellpath flow

Flow along a sequence of cells

Assumptions

- Static, noiseless
- Cell partitioning = Voronoi
- Cellpaths contiguous
- Cellpaths well-posed

A brief note on cellular networks

- Not GPS (read-only signals)
- Cell towers spaced $\frac{1}{4} \frac{1}{2}$ mi (urban areas) to 1-2 mi apart (suburbia)
- Cell towers collect signals as devices connect to and use the network

Related works

Cellular location data + transportation problems

- Excellent survey
- OD matrix estimation (ODME)
- Travel time estimation
- Congestion detection and classification
- Link density estimation
- Route choice modeling

This work: cellular location data + route flow estimation

[GK09] [CWB07, BHNF08, CLDLR11] [THF06, FJS07, B07, JHVRH12] [JHVRH12] [YTWPB14] [TDV12]

Example problem setup

Example problem setup

Example problem setup

Convex optimization formulation

Block simplex constrained quadratic program (QP):

$$\begin{array}{ll} \min & \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2 \\ \text{s.t.} & \mathbf{U} \mathbf{x} = \mathbf{f}, \ \mathbf{x} \geq \mathbf{0} \end{array}$$

▶ link-route:
$$A_{lr} = \begin{cases} 1 & \text{if } l \in r \\ 0 & \text{else} \end{cases}$$
; cellpath-route: $U_{pr} = \begin{cases} 1 & \text{if } r \in \mathcal{R}^p \\ 0 & \text{else} \end{cases}$

▶
$$b \in \mathbb{R}^{|\mathcal{L}|}_+$$
 observed link flow vector, $b = (b_l)_{l \in \mathcal{L}}$

•
$$f \in \mathbb{R}^{|\mathcal{P}|}_+$$
 cellpath flow vector $f = (f_p)_{p \in \mathcal{P}}$

•
$$x \in \mathbb{R}^{|\mathcal{R}|}_+$$
 route flow vector, $x = (x_r)_{r \in \mathcal{R}}$

Block simplex constrained quadratic program (QP):

$$\begin{array}{ll} \min & \frac{1}{2} \| Ax - b \|_2^2 \\ \text{s.t.} & Ux = f, \ x \ge 0 \end{array}$$

► link-route:
$$A_{lr} = \begin{cases} 1 & \text{if } l \in r \\ 0 & \text{else} \end{cases}$$
; cellpath-route: $U_{\rho r} = \begin{cases} 1 & \text{if } r \in \mathcal{R}^{\rho} \\ 0 & \text{else} \end{cases}$

▶
$$b \in \mathbb{R}^{|\mathcal{L}|}_+$$
 observed link flow vector, $b = (b_l)_{l \in \mathcal{L}}$

•
$$f \in \mathbb{R}^{|\mathcal{P}|}_+$$
 cellpath flow vector $f = (f_p)_{p \in \mathcal{P}}$

•
$$x \in \mathbb{R}^{|\mathcal{R}|}_+$$
 route flow vector, $x = (x_r)_{r \in \mathcal{R}}$

Block simplex constrained quadratic program (QP):

$$\begin{array}{ll} \min & \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2 \\ \text{s.t.} & \mathbf{U} \mathbf{x} = \mathbf{f}, \ \mathbf{x} \ge \mathbf{0} \end{array}$$

- n routes
- m link flow measurements
- q cellpath flow constraints
- Separable scaled simplex constraint
- ▶ Weakly convex, underdetermined, $rk(A) \le m \ll n, q \le n$

Flexibility of our formulation

 ${\sf Cellpath} + {\sf observed} \ {\sf link} \ {\sf flows}$

min
$$\frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2$$

s.t. $\mathbf{U} \mathbf{x} = \mathbf{f}, \ \mathbf{x} \ge \mathbf{0}$

 OD + observed link flows

min	$\frac{1}{2} \ Ax - b\ _2^2$
s.t.	$\overline{Tx} = d, x \ge 0$

Cellpath + OD + observed link flows

min
$$\frac{1}{2} \left\| \begin{bmatrix} A \\ T \end{bmatrix} \times - \begin{bmatrix} b \\ d \end{bmatrix} \right\|_2^2$$

s.t. $Ux = f, x \ge 0$

And more: turning ratio data and traffic assignment problem

Flexibility of our formulation

 ${\sf Cellpath} + {\sf observed} \ {\sf link} \ {\sf flows}$

min
$$\frac{1}{2} \| Ax - b \|_2^2$$

s.t. $Ux = f, x \ge 0$

 OD + observed link flows

$$\begin{array}{ll} \min & \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2 \\ \text{s.t.} & \mathbf{T} \mathbf{x} = \mathbf{d}, \, \mathbf{x} \ge \mathbf{0} \end{array}$$

 ${\sf Cellpath} + {\sf OD} + {\sf observed} ~{\sf link}~{\sf flows}$

min
$$\frac{1}{2} \left\| \begin{bmatrix} A \\ T \end{bmatrix} x - \begin{bmatrix} b \\ d \end{bmatrix} \right\|_2^2$$

s.t. $Ux = f, x \ge 0$

And more: turning ratio data and traffic assignment problem

Flexibility of our formulation

 ${\sf Cellpath} + {\sf observed} \ {\sf link} \ {\sf flows}$

min
$$\frac{1}{2} \| Ax - b \|_2^2$$

s.t. $Ux = f, x \ge 0$

 OD + observed link flows

$$\begin{array}{ll} \min & \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2 \\ \text{s.t.} & \mathbf{T} \mathbf{x} = \mathbf{d}, \, \mathbf{x} \ge \mathbf{0} \end{array}$$

 ${\sf Cellpath} + {\sf OD} + {\sf observed} ~{\sf link}~{\sf flows}$

min
$$\frac{1}{2} \left\| \begin{bmatrix} A \\ T \end{bmatrix} x - \begin{bmatrix} b \\ d \end{bmatrix} \right\|_2^2$$

s.t. $Ux = f, x \ge 0$

And more: turning ratio data and traffic assignment problem

Route flow estimation problem and formulation

Block simplex constrained quadratic program: analysis and algorithms

Experiments and conclusions

Goal: design an efficient first-order projected descent method

General projected descent method

```
Algorithm 1 Proj-descent(.)
```

Require: minimizing function f(x)**Require:** initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: **return** *x*
- 1. Equivalence to separable **standard** simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algoritans routenations or resultant

Goal: design an efficient first-order projected descent method

General projected descent method

```
Algorithm 1 Proj-descent(.)
```

Require: minimizing function f(x)**Require:** initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return X
- 1. Equivalence to separable standard simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algoritans routenations or negutical system

Goal: design an efficient first-order projected descent method

General projected descent method

```
Algorithm 1 Proj-descent(.)
```

Require: minimizing function f(x)**Require:** initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return X
- 1. Equivalence to separable standard simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algoritans routenations or resultant

Goal: design an efficient first-order projected descent method

General projected descent method

```
Algorithm 1 Proj-descent(.)
```

Require: minimizing function f(x)

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
- 1. Equivalence to separable **standard** simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algoritans routenations or resultant

General projected descent method

```
Algorithm 1 Proj-descent(\cdot)
```

Require: minimizing function f(x)

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while

```
6: return x
```

- 1. Equivalence to separable standard simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algorithms for BEARTING AL RELEASE

General projected descent method

Algorithm 1 Proj-descent(\cdot)

Require: minimizing function f(x)

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
- 1. Equivalence to separable standard simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algorithms COMERCIPATIONS OF REPLICEMENT

General projected descent method

Algorithm 1 Proj-descent(.)

Require: minimizing function f(x)

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
- 1. Equivalence to separable standard simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algorithms for the stress of the stress of

Goal: design an efficient first-order projected descent method

General projected descent method

Algorithm 1 Proj-descent(.)

Require: minimizing function f(x)

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
- 1. Equivalence to separable standard simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algoritans routenate system

Goal: design an efficient first-order projected descent method

General projected descent method

```
Algorithm 1 Proj-descent(.)
```

Require: minimizing function f(x)

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
- 1. Equivalence to separable standard simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algorithms of reserved.

General projected descent method

```
Algorithm 1 Proj-descent(.)
```

Require: minimizing function f(x)

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction Δx
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
- 1. Equivalence to separable standard simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

(1/3) Block standard simplex

Proposition: Equivalence of scaled and standard simplices

For C a well-posed block simplex matrix:

$$\begin{array}{ll} \min & \frac{1}{2} \|Ax - b\|_2^2 & \iff & \min & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\ \text{s.t.} & Cx = \mathbb{1}, x \ge 0 & & \text{s.t.} & C\tilde{x} = d, \tilde{x} \ge 0 \end{array}$$

where

$$E := \operatorname{diag}(C^T d)$$
 $A := \tilde{A}E$ $x := E^{-1}\tilde{x}$

$$\begin{array}{ll} \min & \frac{1}{2} \|Ax - b\|_2^2 & \iff & \min & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\ \text{s.t.} & Ux = 1, \ x \ge 0 & \qquad & \text{s.t.} & U\tilde{x} = f, \ \tilde{x} \ge 0 \end{array}$$

New interpretation: \tilde{x} is route flow vector $\rightarrow x$ is route split vector

$$A \in \mathbb{R}^{|\mathcal{L}| imes |\mathcal{R}|}_{+}$$
 : $A_{lr} = egin{cases} f_p & ext{if } l \in r \in \mathcal{R}^p \\ 0 & ext{else} \end{cases}$

Block simplex constrained quadratic program: analysis and algorithms for the other states of the state state of the state states of the state states of the state states of the states o

(1/3) Block standard simplex

Proposition: Equivalence of scaled and standard simplices

For C a well-posed block simplex matrix:

$$\begin{array}{ll} \min & \frac{1}{2} \|Ax - b\|_2^2 & \iff & \min & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\ \text{s.t.} & Cx = \mathbb{1}, x \ge 0 & \qquad & \text{s.t.} & C\tilde{x} = d, \tilde{x} \ge 0 \end{array}$$

where

$$E := \operatorname{diag}(C^T d) \quad A := \tilde{A}E \quad x := E^{-1}\tilde{x}$$

$$\begin{array}{ll} \min & \frac{1}{2} \|Ax - b\|_2^2 & \iff & \min & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\ \text{s.t.} & Ux = \mathbb{1}, \ x \ge 0 & \qquad & \text{s.t.} \quad U\tilde{x} = f, \ \tilde{x} \ge 0 \end{array}$$

New interpretation: \tilde{x} is route flow vector $\rightarrow x$ is route split vector

$$A \in \mathbb{R}_{+}^{|\mathcal{L}| \times |\mathcal{R}|} : A_{lr} = \begin{cases} f_{p} & \text{if } l \in r \in \mathcal{R}^{p} \\ 0 & \text{else} \end{cases}$$

Block simplex constrained quadratic program: analysis and algorithms FOUNDATIONS OF RESULTED

Proposition: Equivalence of scaled and standard simplices

For C a well-posed block simplex matrix:

$$\begin{array}{ll} \min & \frac{1}{2} \|Ax - b\|_2^2 & \iff & \min & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\ \text{s.t.} & Cx = \mathbb{1}, x \ge 0 & \qquad & \text{s.t.} & C\tilde{x} = d, \tilde{x} \ge 0 \end{array}$$

where

$$E := \operatorname{diag}(C^T d) \quad A := \tilde{A}E \quad x := E^{-1}\tilde{x}$$

$$\begin{array}{ll} \min & \frac{1}{2} \|Ax - b\|_2^2 & \iff & \min & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\ \text{s.t.} & Ux = \mathbb{1}, \ x \ge 0 & \qquad & \text{s.t.} & U\tilde{x} = f, \ \tilde{x} \ge 0 \end{array}$$

New interpretation: \tilde{x} is route flow vector $\rightarrow x$ is route split vector

$$A \in \mathbb{R}_{+}^{|\mathcal{L}| \times |\mathcal{R}|} : A_{lr} = \begin{cases} f_{p} & \text{if } l \in r \in \mathcal{R}^{p} \\ 0 & \text{else} \end{cases}$$

Block simplex constrained quadratic program: analysis and algorithms roundations or foundations or foundations

(2/3) Transforming standard simplex into ordering constraint

Proposition: Ordering constraint

$$\mathbf{1}^T x^p = 1, \quad x^p \ge \mathbf{0} \quad \Longleftrightarrow \quad \mathbf{0} \le z_1^p \le \cdots \le z_{n_2-1}^p \le \mathbf{1}$$

for an appropriate change of variables $x \rightarrow z$.

Constraint elimination trick: $x^{p} = x_{0}^{p} + J^{p}z^{p}$ Choose $J^{p} = \begin{pmatrix} 1 \\ -1 & 1 \\ & -1 & \ddots \\ & & \ddots \end{pmatrix} \in \mathbb{R}^{n_{p} \times (n_{p}-1)} \text{ and } x_{0}^{p} = (0, \cdots, 0, 1)^{T}$

ffine hyperplane x_0 .

(2/3) Transforming standard simplex into ordering constraint

Proposition: Ordering constraint

$$\mathbf{1}^{\mathsf{T}} x^{\mathsf{p}} = 1, \quad x^{\mathsf{p}} \ge 0 \quad \Longleftrightarrow \quad 0 \le z_1^{\mathsf{p}} \le \cdots \le z_{n_{\mathsf{p}}-1}^{\mathsf{p}} \le 1$$

for an appropriate change of variables $x \rightarrow z$.

affine hyperplane $x_0 + Jz$

(2/3) Transforming standard simplex into ordering constraint

Proposition: Ordering constraint

$$\mathbf{1}^{\mathsf{T}} x^{\mathsf{p}} = 1, \quad x^{\mathsf{p}} \ge 0 \quad \Longleftrightarrow \quad 0 \le z_1^{\mathsf{p}} \le \cdots \le z_{n_{\mathsf{p}}-1}^{\mathsf{p}} \le 1$$

for an appropriate change of variables $x \rightarrow z$.

affine hyperplane $x_0 + Jz$

Choose
$$J^{p} = \begin{pmatrix} 1 & & \\ -1 & 1 & & \\ & -1 & \ddots & \\ & & \ddots & \end{pmatrix} \in \mathbb{R}^{n_{p} \times (n_{p}-1)} \text{ and } x_{0}^{p} = (0, \cdots, 0, 1)^{T}$$

Block simplex constrained quadratic program: analysis and algorithms of BURNATIONAL STREET

(3/3) Isotonic regression

Related work

Isotonic regression with complete order (ABERS55, BC90, LHM09)

```
minimize \sum_{i=1}^{n} w_i (y_i - x_i)^2
subject to x_1 \le x_2 \le \cdots \le x_n
```

Solvable via pool adjacent violators (PAV) algorithm in O(n) (BB72, GW84)

Our work: $\Pi_{\Delta}(y)$ Box-constrained isotonic regression with complete order

> minimize $\sum_{i=1}^{n} w_i (y_i - x_i)^2$ subject to $t \le x_1 \le x_2 \le \dots \le x_n \le u$

Solvable via PAV algorithm, then projection onto $[t, u]^n$, also O(n)

Previous work Direct simplex projection in $O(n \log n)$ (DGK08, WC13)

(3/3) Isotonic regression

Related work

Isotonic regression with complete order (ABERS55, BC90, LHM09)

```
minimize \sum_{i=1}^{n} w_i (y_i - x_i)^2
subject to x_1 \le x_2 \le \cdots \le x_n
```

Solvable via pool adjacent violators (PAV) algorithm in O(n) (BB72, GW84)

Our work: $\Pi_{\Delta}(y)$ Box-constrained isotonic regression with complete order

minimize
$$\sum_{i=1}^{n} w_i (y_i - x_i)^2$$

subject to $t \le x_1 \le x_2 \le \cdots \le x_n \le u$

Solvable via PAV algorithm, then projection onto $[t, u]^n$, also O(n)

Previous work Direct simplex projection in $O(n \log n)$ (DGK08, WC13)

Block simplex constrained quadratic program: analysis and algorithms for REAL SYSTEM

(3/3) Isotonic regression

Related work

Isotonic regression with complete order (ABERS55, BC90, LHM09)

```
minimize \sum_{i=1}^{n} w_i (y_i - x_i)^2
subject to x_1 \le x_2 \le \cdots \le x_n
```

Solvable via pool adjacent violators (PAV) algorithm in O(n) (BB72, GW84)

Our work: $\Pi_{\Delta}(y)$ Box-constrained isotonic regression with complete order

minimize
$$\sum_{i=1}^{n} w_i (y_i - x_i)^2$$

subject to $t \le x_1 \le x_2 \le \cdots \le x_n \le u$

Solvable via PAV algorithm, then projection onto $[t, u]^n$, also O(n)

Previous work Direct simplex projection in $O(n \log n)$ (DGK08, WC13)

(3/3) Box-constrained isotonic regression – proof summary

Proposition: Optimal solution via Euclidean projection

Solution x^* to BCIR(t, u) is the Euclidean projection of the solution x^{iso} to IR onto $[t, u]^n$.

IR: isotonic regression BCIR: block-constrained isotonic regression

(3/3) Box-constrained isotonic regression – proof summary

Proposition: Optimal solution via Euclidean projection

Solution x^* to BCIR(t, u) is the Euclidean projection of the solution x^{iso} to IR onto $[t, u]^n$.

Lemma: Independent subproblems

Given a solution x^{iso} to IR, if there exists k s.t. $x_k^{iso} < x_{k+1}^{iso}$, then IR reduces to two independent subproblems IR_{1:k} and IR_{k+1:n}.

IR: isotonic regression BCIR: block-constrained isotonic regression

(3/3) Box-constrained isotonic regression – proof summary

Proposition: Optimal solution via Euclidean projection

Solution x^* to BCIR(t, u) is the Euclidean projection of the solution x^{iso} to IR onto $[t, u]^n$.

Lemma: Independent subproblems

Given a solution x^{iso} to IR, if there exists k s.t. $x_k^{iso} < x_{k+1}^{iso}$, then IR reduces to two independent subproblems IR_{1:k} and IR_{k+1:n}.

Lemma: Uniformly lower bound solution

Given a solution x^{iso} to IR, if $x_i^{iso} \leq t \forall i$, then $x_i^* = t \forall i$ for BCIR(t, u).

IR: isotonic regression BCIR: block-constrained isotonic regression

Block simplex constrained quadratic program: analysis and algorithm Constrained State Stream

Route flow estimation problem and formulation

Block simplex constrained quadratic program: analysis and algorithms

Experiments and conclusions

Experiment setup: Los Angeles highway network

- Network: 144 links, 44 nodes
- ODs: 21 origins, 3 destinations \implies 42 OD pairs
- Routes: 275 (UE), 300 (SO)
- Route flow: 91 (UE), 153 (SO) positive flows
- Link sensors: 5-100% static sensor coverage (most congested)
- ▶ Cellpath sensors (cells): $\{N^B, N^S, N^L\} \propto \{20, 40, 20\}$ (5-80 total)

Results: Los Angeles highway network

Experiment: Los Angeles full network \rightarrow 90% accuracy

- Network: 20K links, 11K nodes
- 296K routes (up to 50 routes per OD pair)
- 1K observed links (5% coverage)
- 1K cells \implies 203K cellpaths
- 500K agents, trajectories simulated via MATSIM
- 32K origin-destination (OD) pairs; 321 ODs

Results: Los Angeles full network

Cellpath + OD + observed link flows + model error

min
$$\frac{1}{2} \left\| \begin{bmatrix} A \\ T \end{bmatrix} x - \begin{bmatrix} b^{(50)} \\ d \end{bmatrix} \right\|_2^2 + \lambda \left\| x \right\|_2^2$$

s.t. $Ux = f, x \ge 0$

Conclusions

- Cellpath: fusion of cellular and traffic sensor data for route flow estimation via convex optimization
- Route flow estimation has received little attention due to data limitations
- Cellular data is a promising data source
- Route flow estimates will enable short time horizon applications, e.g. prediction and control
- Future work: noisy and dynamic settings, experiments with AT&T data

Network topology, routes, cell towers -

- github.com/megacell
- Get in touch: cathywu@eecs.berkelev.edu

Map

Conclusions

- Cellpath: fusion of cellular and traffic sensor data for route flow estimation via convex optimization
- Route flow estimation has received little attention due to data limitations
- Cellular data is a promising data source
- Route flow estimates will enable short time horizon applications, e.g. prediction and control
- Future work: noisy and dynamic settings, experiments with AT&T data

Network topology, routes, cell towers -

- Website: megacell.github.io
- Implementation: github.com/megacell
- Get in touch: cathywu@eecs.berkeley.edu

Map