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The root of all traffic evils

We have little information of what’s going on in the road network.

Information
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Traditional approaches to traffic flow estimation

Sparse static sensors

+

Equilibrium models
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This talk: data-driven estimation of route flow

Sparse static sensors → observed link flow

+

Cellular network sensors → cellpath flow
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Our contributions

I Convex optimization formulation for route flow estimation problem12

I Formalize cellular network data as cellpaths1

I Formulation compatible with equilibrium concepts and other data1

I Projected gradient method with O
(
n
)

projection step13

I 90% accuracy in numerical experiments on large-scale networks1

I Proposed framework: full pipeline for traffic estimation1

Network topology, routes, cell towers

Cellular data

Traffic cameras, radars, detectors

Convex

optimization

formulation

Projected Route

flow

solution

Map

Cellpath flow

Link flow

Convex

optimization

formulation

Solver

OD flowCensus, travel surveys, OD models

1C Wu, J Thai, S Yadlowsky, A Pozdnoukhov, A Bayen. ”Cellpath: fusion of cellular and traffic sensor
data for route flow estimation via convex optimization.” Transportation Research Part C: Emerging
Technologies (2015).

2C Wu, A Pozdnoukhov, A Bayen. ”Block simplex signal recovery: a method comparison and an
application to routing.” In review, ACM TIST.

3J Thai, C Wu, A Pozdnoukhov, A Bayen. ”Convex programming on the l1-ball and on the simplex via
isotonic regression.” CDC (2015).



Problem statement: route flow estimation

Route flow estimation problem

Given

I Road network, origins, cells

I Top routes between OD pairs

I Cellpath flows, f

I OD flows, d

I Observed link flows, b

Recover

I Flow along routes, x

Cellpath flow

Flow along a sequence of cells

Assumptions

I Static, noiseless

I Cell partitioning = Voronoi

I Cellpaths contiguous

I Cellpaths well-posed

Route flow estimation problem and formulation 8
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A brief note on cellular networks

I Not GPS (read-only signals)

I Cell towers spaced 1
4
− 1

2
mi (urban areas) to 1-2 mi apart (suburbia)

I Cell towers collect signals as devices connect to and use the network

Route flow estimation problem and formulation 9



Related works

Cellular location data + transportation problems

I Excellent survey [GK09]

I OD matrix estimation (ODME) [CWB07, BHNF08, CLDLR11]

I Travel time estimation [THF06, FJS07, B07, JHVRH12]

I Congestion detection and classification [JHVRH12]

I Link density estimation [YTWPB14]

I Route choice modeling [TDV12]

This work: cellular location data + route flow estimation

Route flow estimation problem and formulation 10
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Convex optimization formulation

Block simplex constrained quadratic program (QP):

min 1
2
‖Ax − b‖2

2

s.t. Ux = f , x ≥ 0

I link-route:Alr =

{
1 if l ∈ r

0 else
; cellpath-route:Upr =

{
1 if r ∈ Rp

0 else

I b ∈ R|L|+ observed link flow vector, b = (bl)l∈L

I f ∈ R|P|+ cellpath flow vector f = (fp)p∈P

I x ∈ R|R|+ route flow vector, x = (xr )r∈R

Route flow estimation problem and formulation 12
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Convex optimization formulation

Block simplex constrained quadratic program (QP):

min 1
2
‖Ax − b‖2

2

s.t. Ux = f , x ≥ 0

I n routes

I m link flow measurements

I q cellpath flow constraints

I Separable scaled simplex constraint

I Weakly convex, underdetermined, rk(A) ≤ m� n, q ≤ n

Route flow estimation problem and formulation 13



Flexibility of our formulation

Cellpath + observed link flows

min 1
2
‖Ax − b‖2

2

s.t. Ux = f , x ≥ 0

OD + observed link flows
min 1

2
‖Ax − b‖2

2

s.t. Tx = d , x ≥ 0

Cellpath + OD + observed link flows

min 1
2

∥∥∥∥[AT
]
x −

[
b
d

]∥∥∥∥2

2

s.t. Ux = f , x ≥ 0

And more: turning ratio data and traffic assignment problem

Route flow estimation problem and formulation 14
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Summary of analysis: block simplex quadratic program

Goal: design an efficient first-order projected descent method

General projected descent method

Algorithm 1 Proj-descent(·)
Require: minimizing function f (x)
Require: initial point x in the feasible set X .

1: while stopping criteria not met do
2: Determine a descent direction ∆x
3: Step in that direction: x+ := x + α∆x
4: Projection: x := ΠX (x+)
5: end while
6: return x

1. Equivalence to separable standard simplex constraints

2. Transformable to order constraints via equality constraint elimination

3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algorithms 16
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(1/3) Block standard simplex

Proposition: Equivalence of scaled and standard simplices

For C a well-posed block simplex matrix:

min 1
2
‖Ax − b‖2

2 ⇐⇒ min 1
2
‖Ãx̃ − b‖2

2

s.t. Cx = 1, x ≥ 0 s.t. Cx̃ = d , x̃ ≥ 0

where
E := diag(CTd) A := ÃE x := E−1x̃

min 1
2
‖Ax − b‖2

2 ⇐⇒ min 1
2
‖Ãx̃ − b‖2

2

s.t. Ux = 1, x ≥ 0 s.t. Ux̃ = f , x̃ ≥ 0

New interpretation: x̃ is route flow vector → x is route split vector

A ∈ R|L|×|R|+ : Alr =

{
fp if l ∈ r ∈ Rp

0 else

Block simplex constrained quadratic program: analysis and algorithms 17
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‖Ãx̃ − b‖2

2

s.t. Cx = 1, x ≥ 0 s.t. Cx̃ = d , x̃ ≥ 0

where
E := diag(CTd) A := ÃE x := E−1x̃
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(2/3) Transforming standard simplex into ordering constraint

Proposition: Ordering constraint

1T xp = 1, xp ≥ 0 ⇐⇒ 0 ≤ zp1 ≤ · · · ≤ zpnp−1 ≤ 1

for an appropriate change of variables x → z .

Constraint elimination trick: xp = xP
0 + Jpzp

x0 + Jz

x0 + Jz ≥ 0

affine hyperplane

simplex

Choose Jp =


1
−1 1

−1
. . .

. . .

 ∈ Rnp×(np−1) and xp
0 = (0, · · · , 0, 1)T

Block simplex constrained quadratic program: analysis and algorithms 18
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(3/3) Isotonic regression

Related work
Isotonic regression with complete order (ABERS55, BC90, LHM09)

minimize
∑n

i=1 wi (yi − xi )
2

subject to x1 ≤ x2 ≤ · · · ≤ xn

Solvable via pool adjacent violators (PAV) algorithm in O(n) (BB72, GW84)

Our work: Π∆(y)
Box-constrained isotonic regression with complete order

minimize
∑n

i=1 wi (yi − xi )
2

subject to t ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ u

Solvable via PAV algorithm, then projection onto [t, u]n, also O(n)

Previous work
Direct simplex projection in O

(
n log n

)
(DGK08, WC13)

Block simplex constrained quadratic program: analysis and algorithms 19
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(3/3) Box-constrained isotonic regression – proof summary

Proposition: Optimal solution via Euclidean projection

Solution x∗ to BCIR(t, u) is the Euclidean projection of the solution x iso to IR
onto [t, u]n.

Lemma: Independent subproblems

Given a solution x iso to IR, if there exists k s.t. x iso
k < x iso

k+1,
then IR reduces to two independent subproblems IR1:k and IRk+1:n.

Lemma: Uniformly lower bound solution

Given a solution x iso to IR, if x iso
i ≤ t ∀i , then x∗i = t ∀i for BCIR(t, u).

IR: isotonic regression
BCIR: block-constrained isotonic regression

Block simplex constrained quadratic program: analysis and algorithms 20
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Experiment setup: Los Angeles highway network

I Network: 144 links, 44 nodes

I ODs: 21 origins, 3 destinations =⇒ 42 OD pairs

I Routes: 275 (UE), 300 (SO)

I Route flow: 91 (UE), 153 (SO) positive flows

I Link sensors: 5-100% static sensor coverage (most congested)

I Cellpath sensors (cells):
{
NB ,NS ,NL

}
∝ {20, 40, 20} (5-80 total)

Experiments and conclusions 22



Results: Los Angeles highway network
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Experiment: Los Angeles full network → 90% accuracy

I Network: 20K links, 11K nodes

I 296K routes (up to 50 routes per OD pair)

I 1K observed links (5% coverage)

I 1K cells =⇒ 203K cellpaths

I 500K agents, trajectories simulated via MATSIM

I 32K origin-destination (OD) pairs; 321 ODs

Experiments and conclusions 24



Results: Los Angeles full network

Cellpath + OD + observed link flows + model error

min 1
2

∥∥∥∥[AT
]
x −

[
b(50)

d

]∥∥∥∥2

2

+ λ ‖x‖2
2

s.t. Ux = f , x ≥ 0

Experiments and conclusions 25



Conclusions

I Cellpath: fusion of cellular and traffic sensor
data for route flow estimation via convex
optimization

I Route flow estimation has received little
attention due to data limitations

I Cellular data is a promising data source

I Route flow estimates will enable short time
horizon applications, e.g. prediction and control

I Future work: noisy and dynamic settings,
experiments with AT&T data

I Website: megacell.github.io

I Implementation:
github.com/megacell

I Get in touch:
cathywu@eecs.berkeley.eduNetwork topology, routes, cell towers

Cellular data

Traffic cameras, radars, detectors

Convex

optimization

formulation

Projected Route

flow

solution

Map

Cellpath flow

Link flow

Convex

optimization

formulation

Solver

OD flowCensus, travel surveys, OD models
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