

Cellpath: state estimation of traffic networks via convex optimization

Cathy Wu¹, Jérôme Thai¹, Steve Yadlowsky¹, Alexei Pozdnoukhov², Alexandre Bayen $1,2,3$

¹ Department of Electrical Engineering & Computer Sciences, UC Berkeley ²Department of Civil and Environmental Engineering, UC Berkeley 3 Institute for Transportation Studies (ITS), UC Berkeley

[Route flow estimation problem and formulation](#page-2-0)

[Block simplex constrained quadratic program: analysis and algorithms](#page-21-0)

[Experiments and conclusions](#page-44-0)

[Route flow estimation problem and formulation](#page-2-0)

[Block simplex constrained quadratic program: analysis and algorithms](#page-21-0)

[Experiments and conclusions](#page-44-0)

The root of all traffic evils

We have little information of what's going on in the road network.

Information

Traditional approaches to traffic flow estimation

This talk: data-driven estimation of route flow

This talk: data-driven estimation of route flow

Our contributions

- **Convex optimization formulation for route flow estimation problem**¹²
- Formalize cellular network data as cellpaths¹
- Formulation compatible with equilibrium concepts and other data¹
- Projected gradient method with $O(n)$ projection step¹³
- \triangleright 90% accuracy in numerical experiments on large-scale networks¹
- Proposed framework: full pipeline for traffic estimation¹

¹C Wu, J Thai, S Yadlowsky, A Pozdnoukhov, A Bayen. "Cellpath: fusion of cellular and traffic sensor data for route flow estimation via convex optimization." Transportation Research Part C: Emerging Technologies (2015).

 2° C Wu, A Pozdnoukhov, A Bayen. "Block simplex signal recovery: a method comparison and an application to routing." In review, ACM TIST.

³J Thai, C Wu, A Pozdnoukhov, A Bayen Obnyex, programming on the I1-ball and on the simplex via isotonic regression." CDC (2015).

Problem statement: route flow estimation

Route flow estimation problem

Given

- \blacktriangleright Road network, origins, cells
- \blacktriangleright Top routes between OD pairs
- \blacktriangleright Cellpath flows, f
- \triangleright OD flows, d
- \triangleright Observed link flows, b

Recover

 \blacktriangleright Flow along routes, x

Cellpath flow

Flow along a sequence of cells

- \triangleright Static, noiseless
- \blacktriangleright Cell partitioning $=$ Voronoi
- \triangleright Cellpaths contiguous
- \triangleright Cellpaths well-posed

Problem statement: route flow estimation

Route flow estimation problem

Given

- \blacktriangleright Road network, origins, cells
- \blacktriangleright Top routes between OD pairs
- \blacktriangleright Cellpath flows, f
- \triangleright OD flows, d
- \triangleright Observed link flows, b

Recover

 \blacktriangleright Flow along routes, x

Cellpath flow

Flow along a sequence of cells

Assumptions

- \blacktriangleright Static, noiseless
- \blacktriangleright Cell partitioning $=$ Voronoi
- \blacktriangleright Cellpaths contiguous
- \blacktriangleright Cellpaths well-posed

- \triangleright Not GPS (read-only signals)
- ► Cell towers spaced $\frac{1}{4} \frac{1}{2}$ mi (urban areas) to 1-2 mi apart (suburbia)
- \triangleright Cell towers collect signals as devices connect to and use the network

Related works

Cellular location data $+$ transportation problems

-
- ▶ OD matrix estimation (ODME) [CWB07, BHNF08, CLDLR11]
-
- ▶ Congestion detection and classification **be a set of the control of the Congestion** (JHVRH12)
-
-

This work: cellular location data $+$ route flow estimation

■ Excellent survey **Excellent** survey ▶ Travel time estimation **Interpretent Contract Contract THF06, FJS07, B07, JHVRH12** ► Link density estimation **Internal and Contract and Contract and Contract A [YTWPB14]** ► Route choice modeling and a set of the set

Example problem setup

Example problem setup

Example problem setup

Convex optimization formulation

Block simplex constrained quadratic program (QP):

min
$$
\frac{1}{2} ||Ax - b||_2^2
$$

s.t. $Ux = f, x \ge 0$

$$
\text{* link-route: } A_{lr} = \begin{cases} 1 & \text{if } l \in r \\ 0 & \text{else} \end{cases}; \quad \text{cellpath-route: } U_{pr} = \begin{cases} 1 & \text{if } r \in \mathcal{R}^p \\ 0 & \text{else} \end{cases}
$$

$$
\blacktriangleright b \in \mathbb{R}_+^{|{\mathcal{L}}|}
$$
 observed link flow vector, $b = (b_i)_{i \in {\mathcal{L}}}$

$$
\blacktriangleright \ \ f \in \mathbb{R}_+^{|\mathcal{P}|} \ \text{cellpath flow vector} \ f = (f_\rho)_{\rho \in \mathcal{P}}
$$

$$
\triangleright x \in \mathbb{R}_+^{|\mathcal{R}|}
$$
 route flow vector, $x = (x_r)_{r \in \mathcal{R}}$

Block simplex constrained quadratic program (QP):

min
$$
\frac{1}{2} ||Ax - b||_2^2
$$

s.t. $Ux = f, x \ge 0$

► link-route:
$$
A_{lr} = \begin{cases} 1 & \text{if } l \in r \\ 0 & \text{else} \end{cases}
$$
;
 $\text{cellpath-route: } U_{pr} = \begin{cases} 1 & \text{if } r \in \mathbb{R}^p \\ 0 & \text{else} \end{cases}$
\n▶ $b \in \mathbb{R}^{|C|}_+$ observed link flow vector, $b = (b_l)_{l \in C}$

$$
\begin{array}{ll}\n\ast & f \in \mathbb{R}^{|\mathcal{P}|}_+ \\
\ast & f \in \mathbb{R}^{|\mathcal{P}|}_+ \\
\end{array}
$$

$$
\blacktriangleright x \in \mathbb{R}_+^{|\mathcal{R}|}
$$
 route flow vector, $x = (x_r)_{r \in \mathcal{R}}$

Block simplex constrained quadratic program (QP):

min
$$
\frac{1}{2} ||Ax - b||_2^2
$$

s.t. $Ux = f, x \ge 0$

- \blacktriangleright *n* routes
- \blacktriangleright m link flow measurements
- \blacktriangleright q cellpath flow constraints
- \triangleright Separable scaled simplex constraint
- ► Weakly convex, underdetermined, $rk(A) \le m \ll n, q \le n$

Flexibility of our formulation

 $Cellpath + observed link flows$

min
$$
\frac{1}{2} ||Ax - b||_2^2
$$

s.t. $Ux = f, x \ge 0$

 $OD + observed$ link flows

$$
\begin{array}{ll}\n\text{min} & \frac{1}{2} \left\| \begin{bmatrix} A \\ T \end{bmatrix} x - \begin{bmatrix} b \\ d \end{bmatrix} \right\|_2^2 \\
\text{s.t.} & \quad Ux = f, x \ge 0\n\end{array}
$$

Flexibility of our formulation

 $Cellpath + observed link flows$

min
$$
\frac{1}{2} ||Ax - b||_2^2
$$

s.t. $Ux = f, x \ge 0$

 $OD + observed$ link flows

min
$$
\frac{1}{2} ||Ax - b||_2^2
$$

s.t. $Tx = d, x \ge 0$

Cellpath $+$ OD $+$ observed link flows

$$
\begin{array}{ll}\n\text{min} & \frac{1}{2} \left\| \begin{bmatrix} A \\ T \end{bmatrix} x - \begin{bmatrix} b \\ d \end{bmatrix} \right\|_2^2 \\
\text{s.t.} & Ux = f, x \ge 0\n\end{array}
$$

Flexibility of our formulation

 $Cellpath + observed link flows$

min
$$
\frac{1}{2} ||Ax - b||_2^2
$$

s.t. $Ux = f, x \ge 0$

 $OD + observed$ link flows

min
$$
\frac{1}{2} ||Ax - b||_2^2
$$

s.t. $Tx = d, x \ge 0$

Cellpath $+$ OD $+$ observed link flows

$$
\begin{array}{ll}\n\min & \frac{1}{2} \left\| \begin{bmatrix} A \\ T \end{bmatrix} x - \begin{bmatrix} b \\ d \end{bmatrix} \right\|_2^2 \\
\text{s.t.} & Ux = f, x \ge 0\n\end{array}
$$

And more: turning ratio data and traffic assignment problem

[Route flow estimation problem and formulation](#page-2-0)

[Block simplex constrained quadratic program: analysis and algorithms](#page-21-0)

[Experiments and conclusions](#page-44-0)

General projected descent method

```
Algorithm 1 Proj-descent(·)
```
Require: minimizing function $f(x)$ **Require:** initial point x in the feasible set \mathcal{X} .

-
-
-
-
-
-
-
-
-

General projected descent method

```
Algorithm 1 Proj-descent(·)
```
Require: minimizing function $f(x)$

- 1: while stopping criteria not met do
-
-
-
- 5: end while
- 6: return x
-
-
-

General projected descent method

```
Algorithm 1 Proj-descent(·)
```
Require: minimizing function $f(x)$

- 1: while stopping criteria not met do
- 2: Determine a descent direction ∆x
-
-
- 5: end while
- 6: return x
-
-
-

General projected descent method

Algorithm 1 Proj-descent $(.)$

Require: minimizing function $f(x)$

Require: initial point x in the feasible set \mathcal{X} .

- 1: while stopping criteria not met do
- 2: Determine a descent direction ∆x
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
-
- 5: end while
- 6: return x
-
-
-

[Block simplex constrained quadratic program: analysis and algorithms](#page-21-0) 16

General projected descent method

Algorithm 1 Proj-descent $(.)$

Require: minimizing function $f(x)$

- 1: while stopping criteria not met do
- 2: Determine a descent direction ∆x
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while

```
6: return x
```
-
-
-

General projected descent method

Algorithm 1 Proj-descent $(.)$

Require: minimizing function $f(x)$

- 1: while stopping criteria not met do
- 2: Determine a descent direction ∆x
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
-
-
-

General projected descent method

Algorithm 1 Proj-descent $(.)$

Require: minimizing function $f(x)$

- 1: while stopping criteria not met do
- 2: Determine a descent direction ∆x
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
-
-
-

General projected descent method

Algorithm 1 Proj-descent $(.)$

Require: minimizing function $f(x)$

- 1: while stopping criteria not met do
- 2: Determine a descent direction ∆x
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
- 1. Equivalence to separable standard simplex constraints
-
-

General projected descent method

Algorithm 1 Proj-descent $(.)$

Require: minimizing function $f(x)$

- 1: while stopping criteria not met do
- 2: Determine a descent direction ∆x
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
- 1. Equivalence to separable standard simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
-

General projected descent method

Algorithm 1 Proj-descent $(.)$

Require: minimizing function $f(x)$

- 1: while stopping criteria not met do
- 2: Determine a descent direction ∆x
- 3: Step in that direction: $x^+ := x + \alpha \Delta x$
- 4: Projection: $x := \Pi_{\mathcal{X}}(x^+)$
- 5: end while
- 6: return x
- 1. Equivalence to separable standard simplex constraints
- 2. Transformable to order constraints via equality constraint elimination
- 3. Design an efficient projection under a coordinate change

(1/3) Block standard simplex

Proposition: Equivalence of scaled and standard simplices

For C a well-posed block simplex matrix:

$$
\begin{array}{llll}\n\min & \frac{1}{2} \|Ax - b\|_2^2 & \Longleftrightarrow & \min & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\
\text{s.t.} & Cx = 1, x \ge 0 & \text{s.t.} & C\tilde{x} = d, \ \tilde{x} \ge 0\n\end{array}
$$

where

$$
E := \text{diag}(C^T d) \quad A := \tilde{A}E \quad x := E^{-1}\tilde{x}
$$

$$
\begin{array}{ll}\n\text{min} & \frac{1}{2} \|Ax - b\|_2^2 & \Longleftrightarrow \quad \text{min} & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\
\text{s.t.} & Ux = 1, \, x \ge 0 & \text{s.t.} & U\tilde{x} = f, \, \tilde{x} \ge 0\n\end{array}
$$

$$
A \in \mathbb{R}_{+}^{|\mathcal{L}|\times|\mathcal{R}|} \; : \; A_{lr} = \begin{cases} f_{p} & \text{if } l \in r \in \mathcal{R}^{p} \\ 0 & \text{else} \end{cases}
$$

(1/3) Block standard simplex

Proposition: Equivalence of scaled and standard simplices

For C a well-posed block simplex matrix:

$$
\begin{array}{llll}\n\min & \frac{1}{2} \|Ax - b\|_2^2 & \Longleftrightarrow & \min & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\
\text{s.t.} & Cx = 1, x \ge 0 & \text{s.t.} & C\tilde{x} = d, \ \tilde{x} \ge 0\n\end{array}
$$

where

$$
E := \text{diag}(C^T d) \quad A := \tilde{A} E \quad x := E^{-1} \tilde{x}
$$

$$
\begin{array}{llll}\n\text{min} & \frac{1}{2} \|Ax - b\|_2^2 & \Longleftrightarrow & \text{min} & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\
\text{s.t.} & Ux = \mathbb{1}, \, x \ge 0 & \text{s.t.} & U\tilde{x} = f, \, \tilde{x} \ge 0\n\end{array}
$$

$$
A \in \mathbb{R}_{+}^{|\mathcal{L}| \times |\mathcal{R}|} : A_{lr} = \begin{cases} f_{p} & \text{if } l \in r \in \mathcal{R}^{p} \\ 0 & \text{else} \end{cases}
$$

Proposition: Equivalence of scaled and standard simplices

For C a well-posed block simplex matrix:

$$
\begin{array}{llll}\n\min & \frac{1}{2} \|Ax - b\|_2^2 & \Longleftrightarrow & \min & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\
\text{s.t.} & Cx = 1, \, x \ge 0 & \text{s.t.} & C\tilde{x} = d, \, \tilde{x} \ge 0\n\end{array}
$$

where

$$
E := \text{diag}(C^T d) \quad A := \tilde{A}E \quad x := E^{-1}\tilde{x}
$$

$$
\begin{array}{llll}\n\text{min} & \frac{1}{2} \|Ax - b\|_2^2 & \Longleftrightarrow & \text{min} & \frac{1}{2} \|\tilde{A}\tilde{x} - b\|_2^2 \\
\text{s.t.} & Ux = 1, \ x \ge 0 & \text{s.t.} & U\tilde{x} = f, \ \tilde{x} \ge 0\n\end{array}
$$

New interpretation: \tilde{x} is route flow vector $\rightarrow x$ is route split vector

$$
A \in \mathbb{R}_{+}^{|\mathcal{L}|\times |\mathcal{R}|} \; : \; A_{lr} = \begin{cases} f_{p} & \text{if } l \in r \in \mathcal{R}^{p} \\ 0 & \text{else} \end{cases}
$$

(2/3) Transforming standard simplex into ordering constraint

Proposition: Ordering constraint

$$
\mathbf{1}^T x^p = 1, \quad x^p \ge 0 \quad \Longleftrightarrow \quad 0 \le z_1^p \le \cdots \le z_{n_p-1}^p \le 1
$$

for an appropriate change of variables $x \rightarrow z$.

Choose
$$
J^p = \begin{pmatrix} 1 & & & \\ -1 & 1 & & \\ & -1 & \ddots & \\ & & & \ddots \end{pmatrix} \in \mathbb{R}^{n_p \times (n_p - 1)}
$$
 and $x_0^p = (0, \cdots, 0, 1)^T$

[Block simplex constrained quadratic program: analysis and algorithms](#page-21-0) $\frac{F_{\text{OUPBADN10A}}}{F_{\text{OUPBADN10A}}F_{\text{OUPBADN10A}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{O$

 $x_0 + Jz$

 ${\rm fin}$ e hyperplane ar

(2/3) Transforming standard simplex into ordering constraint

Proposition: Ordering constraint

$$
\mathbf{1}^T x^p = 1, \quad x^p \ge 0 \quad \Longleftrightarrow \quad 0 \le z_1^p \le \cdots \le z_{n_p-1}^p \le 1
$$

for an appropriate change of variables $x \rightarrow z$.

 $x_0 + Jz$ ine hyperplane.

[Block simplex constrained quadratic program: analysis and algorithms](#page-21-0) $\frac{F_{\text{OUPBADN10A}}}{F_{\text{OUPBADN10A}}F_{\text{OUPBADN10A}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{OUPB}}F_{\text{O$

(2/3) Transforming standard simplex into ordering constraint

Proposition: Ordering constraint

$$
\mathbf{1}^T x^p = 1, \quad x^p \geq 0 \quad \Longleftrightarrow \quad 0 \leq z_1^p \leq \cdots \leq z_{n_p-1}^p \leq 1
$$

for an appropriate change of variables $x \rightarrow z$.

affine hyperplane $x_0 + Jz$

Choose
$$
J^p = \begin{pmatrix} 1 & & & \\ -1 & 1 & & \\ & -1 & \ddots & \\ & & & \ddots \end{pmatrix} \in \mathbb{R}^{n_p \times (n_p - 1)}
$$
 and $x_0^p = (0, \dots, 0, 1)^T$

(3/3) Isotonic regression

Related work

Isotonic regression with complete order (ABERS55, BC90, LHM09)

minimize $\sum_{i=1}^{n} w_i (y_i - x_i)^2$ subject to $x_1 < x_2 < \cdots < x_n$

Solvable via pool adjacent violators (PAV) algorithm in $O(n)$ (BB72, GW84)

Our work: $\Pi_{\Delta}(v)$

(3/3) Isotonic regression

Related work

Isotonic regression with complete order (ABERS55, BC90, LHM09)

```
minimize \sum_{i=1}^{n} w_i (y_i - x_i)^2subject to x_1 < x_2 < \cdots < x_n
```
Solvable via pool adjacent violators (PAV) algorithm in $O(n)$ (BB72, GW84)

Our work: $\Pi_{\Lambda}(v)$ Box-constrained isotonic regression with complete order

Solvable via PAV algorithm, then projection onto $[t, u]^n$, also $O(n)$

[Block simplex constrained quadratic program: analysis and algorithms](#page-21-0) 19

(3/3) Isotonic regression

Related work

Isotonic regression with complete order (ABERS55, BC90, LHM09)

```
minimize \sum_{i=1}^{n} w_i (y_i - x_i)^2subject to x_1 \leq x_2 \leq \cdots \leq x_n
```
Solvable via pool adjacent violators (PAV) algorithm in $O(n)$ (BB72, GW84)

Our work: $\Pi_{\Lambda}(v)$ Box-constrained isotonic regression with complete order

minimize
$$
\sum_{i=1}^{n} w_i (y_i - x_i)^2
$$

subject to $t \le x_1 \le x_2 \le \cdots \le x_n \le u$

Solvable via PAV algorithm, then projection onto $[t, u]^n$, also $O(n)$

Previous work Direct simplex projection in $O(n \log n)$ (DGK08, WC13)

[Block simplex constrained quadratic program: analysis and algorithms](#page-21-0) 19

(3/3) Box-constrained isotonic regression – proof summary

Proposition: Optimal solution via Euclidean projection

Solution x^* to $\mathsf{BCIR}(t,u)$ is the Euclidean projection of the solution x^iso to IR onto $[t, u]^n$.

IR: isotonic regression BCIR: block-constrained isotonic regression

(3/3) Box-constrained isotonic regression – proof summary

Proposition: Optimal solution via Euclidean projection

Solution x^* to $\mathsf{BCIR}(t,u)$ is the Euclidean projection of the solution x^iso to IR onto $[t, u]^n$.

Lemma: Independent subproblems

Given a solution x^{iso} to IR, if there exists k s.t. $x_k^{iso} < x_{k+1}^{iso}$, then IR reduces to two independent subproblems $IR_{1:k}$ and $IR_{k+1:n}$.

IR: isotonic regression BCIR: block-constrained isotonic regression

(3/3) Box-constrained isotonic regression – proof summary

Proposition: Optimal solution via Euclidean projection

Solution x^* to $\mathsf{BCIR}(t,u)$ is the Euclidean projection of the solution x^iso to IR onto $[t, u]^n$.

Lemma: Independent subproblems

Given a solution x^{iso} to IR, if there exists k s.t. $x_k^{iso} < x_{k+1}^{iso}$, then IR reduces to two independent subproblems $IR_{1:k}$ and $IR_{k+1:n}$.

Lemma: Uniformly lower bound solution

Given a solution x^{iso} to IR, if $x^{\text{iso}}_i \leq t \,\forall i$, then $x^*_i = t \,\forall i$ for BCIR (t,u) .

IR: isotonic regression BCIR: block-constrained isotonic regression

[Block simplex constrained quadratic program: analysis and algorithms](#page-21-0) **by EQUIDATIONS** OF RESULTENT STATEMS 20

[Route flow estimation problem and formulation](#page-2-0)

[Block simplex constrained quadratic program: analysis and algorithms](#page-21-0)

[Experiments and conclusions](#page-44-0)

Experiment setup: Los Angeles highway network

- \blacktriangleright Network: 144 links, 44 nodes
- ODs: 21 origins, 3 destinations = 42 OD pairs
- ▶ Routes: 275 (UE), 300 (SO)
- \triangleright Route flow: 91 (UE), 153 (SO) positive flows
- \blacktriangleright Link sensors: 5-100% static sensor coverage (most congested)
- ► Cellpath sensors (cells): $\{N^B, N^S, N^L\} \propto \{20, 40, 20\}$ (5-80 total)

Results: Los Angeles highway network

Experiment: Los Angeles full network \rightarrow 90% accuracy

- \blacktriangleright Network: 20K links, 11K nodes
- ▶ 296K routes (up to 50 routes per OD pair)
- \triangleright 1K observed links (5% coverage)
- ▶ 1K cells \implies 203K cellpaths
- \triangleright 500K agents, trajectories simulated via MATSIM
- ▶ 32K origin-destination (OD) pairs; 321 ODs

Results: Los Angeles full network

Cellpath $+$ OD $+$ observed link flows $+$ model error

$$
\begin{array}{ll}\n\min & \frac{1}{2} \left\| \left[\frac{A}{T} \right] x - \left[\frac{b^{(50)}}{d} \right] \right\|_2^2 + \lambda \left\| x \right\|_2^2 \\
\text{s.t.} & \quad Ux = f, \ x \ge 0\n\end{array}
$$

Conclusions

- \blacktriangleright Cellpath: fusion of cellular and traffic sensor data for route flow estimation via convex optimization
- \triangleright Route flow estimation has received little attention due to data limitations
- \blacktriangleright Cellular data is a promising data source
- \triangleright Route flow estimates will enable short time horizon applications, e.g. prediction and control
- \blacktriangleright Future work: noisy and dynamic settings, experiments with AT&T data

Network topology, routes, cell towers

-
-
-

Map

Conclusions

- \blacktriangleright Cellpath: fusion of cellular and traffic sensor data for route flow estimation via convex optimization
- \triangleright Route flow estimation has received little attention due to data limitations
- \blacktriangleright Cellular data is a promising data source
- \triangleright Route flow estimates will enable short time horizon applications, e.g. prediction and control
- \blacktriangleright Future work: noisy and dynamic settings, experiments with AT&T data

Network topology, routes, cell towers

- ▶ Website: megacell.github.io
- \blacktriangleright Implementation: github.com/megacell
- \triangleright Get in touch: cathywu@eecs.berkeley.edu

Map