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The root of all traffic evils

We have little information of what's going on in the road network.
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Information
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Route flow estimation problem and formulation \)
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Sparse static sensors
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Equilibrium models
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Sparse static sensors
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Cellular network sensors
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Sparse static sensors — observed link flow
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Cellular network sensors — cellpath flow
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Our contributions

» Convex optimization formulation for route flow estimation problem?!?

v

Formalize cellular network data as cellpaths®

v

Formulation compatible with equilibrium concepts and other data?

v

Projected gradient method with O(n) projection step'?

v

90% accuracy in numerical experiments on large-scale networks®

v

Proposed framework: full pipeline for traffic estimation®

Network topology, routes, cell towers

Cellular data — Cellpath flow Convex Route
optimization |- Solver —> flow
Traffic cameras, radars, detectors —|  Link flow formulation solution

Census, travel surveys, OD models

1C Wu, J Thai, S Yadlowsky, A Pozdnoukhov, A Bayen. " Cellpath: fusion of cellular and traffic sensor
data for route flow estimation via convex optimization.” Transportation Research Part C: Emerging
Technologies (2015).

2C Wu, A Pozdnoukhov, A Bayen. "Block simplex S|gnal recovery: a method comparison and an
application to routing.” In review, ACM TIS(" F S

3) Thai, C Wu, A Pozdnoukhov, A Bayen lwex pr@gsa;mmmg on the I1-ball and on the simplex via
isotonic regression.” CDC (2015). crosmment T



Route flow estimation problem

Given
> Road network, origins, cells

» Top routes between OD pairs
> Cellpath flows, f

> OD flows, d

» Observed link flows, b

Recover
» Flow along routes, x

Cellpath flow

Flow along a sequence of cells
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Route flow estimation problem

Given

> Road network, origins, cells

» Top routes between OD pairs
> Cellpath flows, f

> OD flows, d

» Observed link flows, b

Recover

» Flow along routes, x

Assumptions

» Static, noiseless
Cellpath flow L .
> Cell partitioning = Voronoi

Cellpaths contiguous

\4

Flow along a sequence of cells

v

Cellpaths well-posed
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> Not GPS (read-only signals)

> Cell towers spaced + — 2 mi (urban areas) to 1-2 mi apart (suburbia)

> Cell towers collect signals as devices connect to and use the network
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Cellular location data + transportation problems

> Excellent survey [GKO09]
» OD matrix estimation (ODME) [CWBO07, BHNF08, CLDLR11]
> Travel time estimation [THF06, FJSO07, BO7, JHVRH12]
» Congestion detection and classification [JHVRH12]
» Link density estimation [YTWPB14]
» Route choice modeling [TDV12]

This work: cellular location data + route flow estimation
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Route flow estimation problem and formulation

All flows are in 1000 vehicles/hour.

forzza=1 =x
cellpath flows: ¢ foie54 =4 = X2
Jresa =10 = x3 + x4

dap =5 =x1+x

OD demands: {dCB 10 = x5+ 14

Link flow: b =9 = x; + x3

1000 Fp1234

(Ux=f): 0100|x= _f;,1554
0011 Sposa

ZAB] . (Ax=b): [0110]x=bh
CB



All flows are in 1000 vehicles/hour.

frima=1 =x
cellpath flows: ¢ foie54 =4 = X2
Srosa =10 =x3+ x4

dap =5 =x1+x

OD demands: {dCB 10 = x5+ 14

Link flow: b =9 = x; + x3

1000 Fp1234
(Ux=f): 0100|x= _f;,1554
0011 Sposa

o [1100) _fdu] | (e -
\TxL D [0011]"‘{11@} : [(Ax—b). [OllO]x—b]
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All flows are in 1000 vehicles/hour.

forzza=1 =x
cellpath flows: ¢ foie54 =4 = X2
Jresa =10 = x3 + x4

dap =5 =x1+x

OD demands: {dCB 10 = x5+ 14

Link flow: b =9 = x; + x3

1000 Jr1234
(Ux=f): 0100|x= f;,1554
0011 Sposa

dAB] ; (Ax=b): [0110]x=b
dcp

sol. with ODs: x = x* + [1 -1 1-1]"4, Ve [-1,4]

Route flow estimation problem and formulation
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Block simplex constrained quadratic program (QP):

min  3[|Ax — b|3
st. Ux=f, x>0
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Block simplex constrained quadratic program (QP):

min  3[|Ax — b|3
st. Ux=f, x>0

1 ifler

1 if p
i cellpath-route: Upr = { ifreR

0 else

v

link-route: A, =
0 else

v

be ]lel observed link flow vector, b = (by)iec

fe ]lel cellpath flow vector f = (f,)pep

v

X € RLRI route flow vector, x = (x/)rer

v
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Block simplex constrained quadratic program (QP):

min 3|/ Ax — b|3
st. Ux=f, x>0

n routes
m link flow measurements

q cellpath flow constraints

v vV v VY

Separable scaled simplex constraint

v

Weakly convex, underdetermined, rk(A) < m < n,q <n
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Cellpath + observed link flows

min %||Ax — b3
st. Ux=f, x>0

OD + observed link flows
min  3||Ax — b|3
st. Tx=d, x>0
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Cellpath + observed link flows
min
s.t.
OD + observed link flows
min
s.t.
Cellpath + OD + observed link flows

min

s.t.

Route flow estimation problem and formulation

S

S

3I1Ax — b3
Ux=f,x>0

1)|Ax — b|3
Tx=d, x>0

7l

2

2

Ux=f,x>0
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min  3[|Ax — b||3
st. Ux=f, x>0

Cellpath + observed link flows

OD + observed link flows
min  3||Ax — b|3
st. Tx=d, x>0

Cellpath + OD + observed link flows
Al b
T X7 |d

st. Ux=f, x>0

2
1

min 2

2

And more: turning ratio data and traffic assignment problem

@) FORCES

FOUNDATIONS OF RESILIENT
G 14

Route flow estimation problem and formulation YBER-PHYSICAL SYSTEMS



- ——

Route flow estimation problem and formulation
Block simplex constrained quadratic program: analysis and algorithms

Experiments and conclusions

@1 FORCES

Block simplex constrained quadratic program: analysis and algof RTINS O TN 15



oal: design an efficient first-order projec ent meth

General projected desc method

Algorithm 1 Proj-descent(-)

Require: minimizing function f(x)
Require: initial point x in the feasible set X.
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oal: design an efficient first-order projec ent meth

General projected desc method

Algorithm 1 Proj-descent(-)

Require: minimizing function f(x)
Require: initial point x in the feasible set X.
1: while stopping criteria not met do
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oal: design an efficient first-order projec ent m

General projected descent method

Algorithm 1 Proj-descent(-)

Require: minimizing function f(x)

Require: initial point x in the feasible set X.
1: while stopping criteria not met do
2:  Determine a descent direction Ax
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oal: design an efficient first-order projec ent m

General projected descent method

Algorithm 1 Proj-descent(-)

Require: minimizing function f(x)

Require: initial point x in the feasible set X.
1: while stopping criteria not met do
2. Determine a descent direction Ax
3. Step in that direction: x* := x + aAx
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oal: design an efficient first-order projec ent m

General projected descent method

Algorithm 1 Proj-descent(-)

Require: minimizing function f(x)

Require: initial point x in the feasible set X.
1: while stopping criteria not met do
2. Determine a descent direction Ax
3. Step in that direction: x* := x + aAx
4:  Projection: x := I'Ix(x+)
5:
6
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oal: design an efficient first-order projec

General projected descent method

Algorithm 1 Proj-descent(-)

Require: minimizing function f(x)

Require: initial point x in the feasible set X.
1: while stopping criteria not met do
2 Determine a descent direction Ax
3. Step in that direction: x* := x + aAx
4. Projection: x := I'Ix(x+)
5: end while
6: return x

CYBER-PHYSICAL SYSTEMS

CQ FORCES

Block simplex constrained quadratic program: analysis and algof RIS A T



oal: design an efficient first-order projec ent m

General projected descent method

Algorithm 1 Proj-descent(-)

Require: minimizing function f(x)

Require: initial point x in the feasible set X.
1: while stopping criteria not met do
2 Determine a descent direction Ax
3. Step in that direction: x* := x + aAx
4. Projection: x := My (x" )
5. end while
6: return x
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oal: design an efficient first-order projec

General projected descent method

Algorithm 1 Proj-descent(-)

Require: minimizing function f(x)

Require: initial point x in the feasible set X.
1: while stopping criteria not met do
2 Determine a descent direction Ax
3. Step in that direction: x* := x + aAx
4. Projection: x := My (x" )
5. end while
6: return x

1. Equivalence to separable standard simplex constraints
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oal: design an efficient first-order projecte:

escent metho

General projected descent method

Algorithm 1 Proj-descent(-)

Require: minimizing function f(x)
Determine a descent direction

. end while

2
3
4. Projection: x := My (x" )
5
6: return x

Require: initial point x in the feasible set X.
1: while stopping criteria not met do

Ax

Step in that direction: x™ := x + aAx

1. Equivalence to separable standard simplex constraints

2. Transformable to order constraints via equality constraint elimination

Block simplex constrained quadratic program: analysis and algoa
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oal: design an efficient first-order projecte:

escent metho

General projected descent method

Algorithm 1 Proj-descent(-)

Require: minimizing function f(x)
Determine a descent direction

. end while

2
3
4. Projection: x := My (x")
5
6: return x

Require: initial point x in the feasible set X.
1: while stopping criteria not met do

Ax

Step in that direction: x™ := x + aAx

1. Equivalence to separable standard simplex constraints
2. Transformable to order constraints via equality constraint elimination

3. Design an efficient projection under a coordinate change

Block simplex constrained quadratic program: analysis and algoa
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Proposition: Equivalence of scaled and standard simplices

For C a well-posed block simplex matrix:

min 1|/ Ax — b||3 <= min %H/Z\)"( — b|i3
st. &x=1,x>0 st. CX=d,X>0

where B
E:=diag(C'd) A:=AE x:=E7'x
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Proposition: Equivalence of scaled and standard simplices

For C a well-posed block simplex matrix:

min 1|/ Ax — b||3 < min 3 1| A% — b||2
st. &k=1,x>0 st. Cx=d,X>0

where B
E:=diag(C'd) A:=AE x:=E7'x
min  3||Ax — b|3 <~ min | A — bl|3
st. Ux=f%>0

st. Ux=1,x>0
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Proposition: Equivalence of scaled and standard simplices

For C a well-posed block simplex matrix:
min 1|/ Ax — b||3 <= min 2||A><— b||2
st. Cx=1,x>0 st. Cx=d, x>0

where B
E:=diag(C'd) A:=AE x:=E7'x

min  3||Ax — b|3 < min %HA)"( — b3
st. Ux=1,x>0 st. UR=f,%>0

New interpretation: X is route flow vector — x is route split vector

f, iflereRP
AER‘leIRI : A,,:{Op clse
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Proposition: Ordering constraint

17’ =1, x*>0 <= 0<z/<---<z’ <1

p =

for an appropriate change of variables x — z.

simplex zp+ Jz >0

CQ FORCES

Block simplex constrained quadratic program: analysis and algof RTINS O TN 18



Proposition: Ordering constraint

1'xP =1, x*>0 <+ 0<z/<--<zl <1

p =

for an appropriate change of variables x — z.

Constraint elimination trick: x? = x§ + JPzP

simplex zp+ Jz >0
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Proposition: Ordering constraint

17’ =1, x*>0 <= 0<z/<---<z’ <1

p =

for an appropriate change of variables x — z.

Constraint elimination trick: x? = x§ + JPzP

-1 1 simplex zp+ Jz >0

Choose JP = - e R»*(=Y and xP = (0, ---, 0, 1)7
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Related work \

Isotonic regression with complete order (ABERS55, BC90, LHM09)

minimize 7, wi(yi — xi)?
subjectto x1 < x < - < X

Solvable via pool adjacent violators (PAV) algorithm in O(n) (BB72, Gws4)
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Related work

Isotonic regression with complete order (ABERS55, BC90, LHM09)

minimize 7, wi(yi — xi)?
subjectto x3 < x < --- < X,

Solvable via pool adjacent violators (PAV) algorithm in O(n) (BB72, Gws4)

Our work: Ma(y)
Box-constrained isotonic regression with complete order

minimize Y7, wi(yi — x;)?
subjectto t<x << - <x,<u

Solvable via PAV algorithm, then projection onto [t, u]", also O(n)
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\
Related work

Isotonic regression with complete order (ABERS55, BC90, LHM09)

minimize 7, wi(yi — xi)?
subjectto x3 < x < --- < X,

Solvable via pool adjacent violators (PAV) algorithm in O(n) (BB72, Gws4)

Our work: Ma(y)
Box-constrained isotonic regression with complete order

minimize Y7, wi(yi — x;)?
subjectto t<x << - <x,<u

Solvable via PAV algorithm, then projection onto [t, u]", also O(n)

Previous work
Direct simplex projection in O(nlog n) (DGKO08, WC13)
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Proposition: Optimal solution via Euclidean projection

Solution x* to BCIR(t, u) is the Euclidean projection of the solution x*° to IR
onto [t, u]".

IR: isotonic regression
BCIR: block-constrained isotonic regression
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Proposition: Optimal solution via Euclidean projection

Solution x* to BCIR(t, u) is the Euclidean projection of the solution x*° to IR
onto [t, u]".

Given a solution x™ to IR, if there exists k s.t. xf° < x°;,
then IR reduces to two independent subproblems IR1.x and IRx+1:5.

IR: isotonic regression
BCIR: block-constrained isotonic regression
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Proposition: Optimal solution via Euclidean projection

Solution x* to BCIR(t, u) is the Euclidean projection of the solution x*° to IR
onto [t, u]".

Lemma: Independent subproblems

Given a solution x™ to IR, if there exists k s.t. xf° < x°;,
then IR reduces to two independent subproblems IR1.x and IRx+1:5.

Lemma: Uniformly lower bound solution

Given a solution x™ to IR, if x/* < t Vi, then x* = t Vi for BCIR(t, u).

IR: isotonic regression
BCIR: block-constrained isotonic regression

CQ FORCES

Block simplex constrained quadratic program: analysis and algol RTINS O TN 20



\

Route flow estimation problem and formulation
Block simplex constrained quadratic program: analysis and algorithms

Experiments and conclusions

@ FORCES

FOUNDATIONS OF RESILIENT 21
c

Experiments and conclusions YBER-PHYSICAL SYSTEMS.



Routes: 275 (UE), 300 (SO)

Route flow: 91 (UE), 153 (SO) positive flows

Link sensors: 5-100% static sensor coverage (most congested)
Cellpath sensors (cells): {N? N° N"} o {20,40,20} (5-80 total)

vV vV v v

@ origins
@ destinations

delay / ff-delay = 1
== 1 < delay/ ff-delay <= 1.5
—— 15<delay/fi-delay<=2|
—— 2<delay/fi-delay<=3 |-
=== 3 <delay/ff-delay

AN N R Nl i '
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Ratio # cellpaths over # used paths

. __UE route flow error from cell and OD data S0 route flow error from cell and OD data
e—e With OD flows
G107 W 5 = —_
R g
20 210t s
. ] &
&1 | [+ with 0D flows & ™
|| oo witn g0 ceiis )
10° [le—e With 40 cells b 300
e With 20 cells
10° He—s With 10 cells 29
oo With 5 cells D
107, 102
o 20 30 o 55 & 70 % o3 3% 4o — %70 I g 20
Percentage o% links observedaf%) Percentage (s# links observsd?%) Number of cells

UE route flow error from cell vs OD data

ree of freedom in SO from cell and OD data 0
With OD flows|

w0 Degree of freedom in UE from cell and OD data 1202
~- With ODs.

With 80 cells|[ 200~ o~ With 80 cells With 80 cells
2 With 40 cells RN e~ With 40 cells With 40 cells
With 20 cells o Tl o With 20 cels[| 10 With 20 cells
£ with 10 cels|| £ <= With 10 cells With 10 cells
2 with 5 cells || B ) e Withscells || § With 5 cells
8 2. g
2
5 g S
g 2 o [:4
e 10 L\‘\M\

o0

:

E E 10
" Percentage of links observed (%) © ' Percentage of inks observed (%) " Percentage of links observed (%)
0 SO route flow error from cell vs OD data Degree of freedom in UE from cell vs OD data Degree of freedom in SO from cell vs OD data
e~ With OD flows -~ With ODs ‘With ODs.
o With 80 cells e With80 cells||  100f~_ With 80 cells|
e With 40 cells e With 40 cells | ‘With 40 cells|
00 e With 20 cells o e With 20 cells 80 With 20 cells
oo with10celts || E ke o with10ceis|| & With 10 cells
5 o withscels || § o withscels || S With 5 cells
: g £,
Lot 5 b=
£ H a2
: £
o>
X e e e e e | 8 a
B e P I -
60| T - a0
107,
* Pércentage of links observed (%) » Iigrcerfeage\f)'fjlink? obsbrved’(%) © ™ " patcentage of linkSobsetved %)
A S | I\ LD
FOUNDATIONS OF RESILIENT 2

Experiments and conclusions CYBER-PHYSICAL SYSTEMS



Experiment: Los Angeles full network — 90% accuracy

» Network: 20K links, 11K nodes

> 296K routes (up to 50 routes per OD pair)

» 1K observed links (5% coverage)

> 1K cells = 203K cellpaths

» 500K agents, trajectories simulated via MATSIM
» 32K origin-destination (OD) pairs; 321 ODs
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2
A )
. 1 2
min = X — + X[x
3 [7] %= [0 ]] 2
st. Ux=f, x>0
1°1Mod¢=l route flow error from cell data MATsim link flow error
38 e—e 50 Routes L0k sems ~esimimieia
v e—e 40 Routes
+—e 30 Routes I Al S e A

5 10°’ B e—e 20Routes|| 8
at) e—e 10 Routes ‘3
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g T
g 5
© e
&) 107 } N 0.4
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Conclusions

v

v

v

v

v

Cellpath: fusion of cellular and traffic sensor

data for route flow estimation via convex

optimization

Route flow estimation has received little

attention due to data limitations c
Cellular data is a promising data source

Route flow estimates will enable short time
horizon applications, e.g. prediction and control

Future work: noisy and dynamic settings,
experiments with AT&T data

Network topology, routes, cell towers

Cellular data — Cellpath flow Convex
optimization

Traffic cameras, radars, detectors — Link flow formulation

1

Solver

Route
> flow

solution

Census, travel surveys, OD models
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Conclusions

v

Cellpath: fusion of cellular and traffic sensor
data for route flow estimation via convex
optimization

v

Route flow estimation has received little
attention due to data limitations C

v

Cellular data is a promising data source

v

Route flow estimates will enable short time
horizon applications, e.g. prediction and control

» Future work: noisy and dynamic settings, > Website: megacell.github.io
experiments with AT&T data » Implementation:

github.com/megacell

» Get in touch:

Network topology, routes, cell towers cathywu@eecs.berkeley.edu

Cellular data — Cellpath flow Convex Route
optimization |- Solver > flow
Traffic cameras, radars, detectors —|  Link flow formulation solution

Census, travel surveys, OD models
(‘ FORCES
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