Competition in Electricity Markets with Renewable Sources

Ali Kakhbod and Asu Ozdaglar

Laboratory for Information and Decision Systems
Electrical Engineering and Computer Science Department
Massachusetts Institute of Technology

FORCES Review Meeting

June 2014

Introduction

- Our earlier work [Wei, Malekian, Ozdaglar 14] focused on demand management under competitive markets with rich heterogeneity on the demand side and production and ramp up/ramp down costs on the production side.
- Two important elements missing from this picture:
 - Market power of several generators in deregulated wholesale markets → oligopolistic rather than competitive modeling.
 - Increasing importance of renewables.

Motivation

- Concerns about climate change have led both to an expansion in renewable energy investments and the establishment of ambitious targets for the share of future renewable energy sources.
- At least 67 countries, including 27 EU countries have renewable energy targets of some type.
 - The EU baseline target is to have 20% of electricity provided by renewables by year 2020.
- This motivates many conventional (thermal) energy companies to diversify their energy portfolio and increase their investments in renewable plants, e.g. Xcel Energy in US, Alstom Energy in Europe:

"A diverse energy portfolio is the only sound business and policy strategy able to address any Energy & Climate scenario", says Alstom at World Energy Congress (WEC 2013).

Merit Order Effect

 Because marginal cost of wind and solar is negligible, expansion of their supply reduces spot prices (the so called "merit order" effect).

Figure: Source: [Sensfuss et al. 2008]

Merit Order Effect

Figure: Relation between prices in red (\$/MWh) and renewable energy output in blue (MWh) in Germany. Source: European Energy Exchange (EEX).

 Based on this evidence and theoretical expectation, it is generally forecast that merit order effect will continue to reduce prices in the future.

Our Contribution

- The fact that much of wind power may come to be supplied by conventional energy companies (which rely on thermal generators) may neutralize the merit order effect.
- In an oligopolistic market, firms may strategically reduce their conventional supply exactly to offset the increase in wind output.
- This effect crucially depends on conventional energy companies being the suppliers of wind power.
 - Otherwise they would not internalize the increase in profits in wind supply from reducing conventional energy supply.
- This suggests that the diversification of conventional energy companies and their potential dominance over wind power may need to be regulated.

Plan

- We illustrate the merit order neutralization using a simple oligopoly model with conventional and wind energy.
- We show that strategic supply choices creates an offset on the impact of wind supply.
- If all wind is owned by conventional suppliers, then this offset is complete and there is no impact from wind power penetration on prices.
- If there are forward contracts (a common feature of energy markets), then prices are uniformly lower but neutralization of merit order effect still applies.
- We will also consider the incomplete information case when the wind availability is stochastic, heterogeneous and not commonly known.

A Note on Modeling

- Electricity market competition (on generation) modeled using two approaches.
- Supply Function Competition:
 - Firms (or generators) compete by choosing supply functions specifying power supply as a function of price. ([Klemperer, Meyer 89], [Green, Newbery 92], [Rudkevich et al. 98], [Baldick, Hogan 02], [Baldick et al. 04]).
 - Appealing due to its similarity to how markets operate in practice where generators submit step-wise increasing offer function.
- Cournot Competition:
 - Firms compete by choosing their power supply (price determined by market clearing) ([Borenstein et al. 95], [Borenstein, Bushnell 99], [Hogan 97], [Oren 97], [Yao et al. 08]).
 - Appealing due to its analytical tractability.
 - Cournot model often provides a good explanation of observed price variations ([Baldick 02], [Willems et al. 09])
- We will use Cournot model in representing the strategic interactions between generators (we ignore transmission constraints for now).

Simplified Model

• Two conventional generators each producing q_i units of thermal energy (from gas or fuel) at cost

$$c_i(q_i) = \gamma q_i$$
, where $\gamma > 0$ is a scalar.

- We assume there are wind farms producing a total amount of *R* units of wind energy (with zero marginal cost of production).
- Inverse demand function (specifying market price as a function of total amount) is given by

$$P(q) = \alpha - (q + R)$$
, where $\alpha > 0$ is a scalar.

,

Case 0: Merit Order Effect (MoE) with Nonstrategic Suppliers

- As a benchmark, suppose that the two conventional generators supply some amount q_1 and q_2 to the market regardless of wind availability.
- We can see the starkest form of merit order effect:

$$p^{C0} = P(q_1 + q_2) = \alpha - (q_1 + q_2 + R),$$

implying that $\frac{dp}{dR} = -1$.

• In this case, when R increases, price goes down one for one.

Case 1: MoE with Strategic Suppliers

- Now suppose that supply is determined by Cournot competition by two conventional generators that do not own wind farms.
- Each generator *i* is interested in maximizing his profit given by

$$\Pi_i^{C1}(q_1, q_2) = P(q_1 + q_2)q_i - \gamma q_i = (\alpha - (q_1 + q_2 + R))q_i - \gamma q_i.$$

• The price at the Nash equilibrium of the resulting game is given by

$$p^{C1} = \frac{1}{3}(\alpha - R + 2\gamma),$$

implying that $\frac{dp}{dR} = -\frac{1}{3}$, an offset relative to full MoE.

- This is due to strategic substitutes in Cournot competition (when one player increases its strategy, other player's best response declines).
- Here strategic substitutes entails that when R increases, both q_1 and q_2 decreases accounting for partial offset of MoE.

Case 2: Neutralization of MoE

- Suppose that each conventional generator owns $\delta \frac{R}{2}$ units of wind, $\delta \in [0, 1]$.
 - When $\delta = 1$, all wind is supplied by conventional power generators.
- Generator *i*'s profit is now given by

$$\Pi_{i}^{C2}(q_{1},q_{2}) = P(q_{1}+q_{2})\left(q_{i}+\delta\frac{R}{2}\right) - \gamma q_{i} = \left(\alpha - (q_{1}+q_{2}+R)\right)\left(q_{i}+\delta\frac{R}{2}\right) - \gamma q_{i}.$$

• The price at the Nash equilibrium of the resulting game is given by

$$p^{C2} = \frac{1}{3}(\alpha - R + \delta R + 2\gamma).$$

- When $\delta \to 1$, $\frac{dp}{dR} = 0$, thus MoE is fully neutralized.
- What explains this paradoxical result?
 - When δ → 1, all wind supply generates profits for conventional power generators. Incentive to hold back on conventional supply to keep prices higher and protect their profits from wind.

Case 3: Forward Contracts

- We now consider the same economy, but allow conventional generators to sign forward contracts.
- Forward contracts have become increasingly important in electricity markets.
 They are sometimes argued to:
 - reduce price by creating a precommitted supply in the market,
 - reduce volatility by making certain quantity available before cost and wind power availability is realized.
- We will now see that introducing forward contracts indeed reduce prices, but MoE is still neutralized in the presence of diversified producers.

Case 3: Forward Contracts (Continued)

- Economy has two dates, t = 1, 2.
- At t = 1, each conventional generator i signs a contract (q_i^f, p_i^f) , promising to generate q_i^f units of (thermal) energy at price p_i^f for delivery at t = 2 (similar to the model in [Allaz, Vila 93]).
- The price at the (subgame perfect) Nash equilibrium of the resulting game is given by

$$p^{C3} = \frac{1}{5}(\alpha - R + \delta R + 4\gamma) < p^{C2}.$$

- With forward contracts, prices are uniformly lower because forward commitments make each Cournot oligopolists act partially as a Stackleberg leader (since they first choose their forward contract and this forces other producer to cut back on his production).
- Therefore forward contracts make competition fiercer pushing prices down.

¹We assume no arbitrage. Forward price must be equal to spot price given forward positions.

Case 4: Incomplete Information

- Now imagine incomplete information where the availability of wind at generator i is given by $R_i = R/2 + \theta_i$, where $\theta_i \sim \mathcal{N}(0, \sigma^2)$ (each generator owns δR_i units of wind).
- θ_i is private information of generator i: each generator knows his own realized wind.
- We assume θ_1 and θ_2 are correlated capturing the geographic proximity of the wind farms of the generators affected by some local condition.
 - $Cov(\theta_1, \theta_2) = \kappa \sigma^2$, where κ is inversely proportional to the distance between the wind farms.

Equilibrium

Proposition

There exists a unique pure-strategy perfect Bayesian equilibrium (PBE) in linear strategies in which each generator i produces

$$\begin{array}{lcl} q_i(\theta_i) & = & q_i^{complete \ information} - \left(\frac{1+\delta+\kappa}{2+\kappa}\right)\theta_i \\ & = & \frac{2}{5}(\alpha-R-\delta R/4-\gamma) - \left(\frac{1+\delta+\kappa}{2+\kappa}\right)\theta_i, \end{array}$$

and the resulting price satisfies

$$E[p^{C4}] = p^{C3},$$

$$Var(p^{C4}) = 2\left(\frac{1-\delta}{2+\kappa}\right)^2 (1+\kappa)\sigma^2.$$

Intuition

- Each generator cuts back on supply (relative to complete information) as a function of their wind availability for the same reason as before.
- This effect is now modulated because θ_i also gives information about wind availability of competitor:
 - When κ high, wind availability more correlated and greater holding back.
- When $\delta = 1$: this effect disappears, production does not depend on κ !
 - With $\delta = 1$, there is complete neutralization of MoE, i.e., total production of each producer (conventional +wind) is independent of θ .
- Volatility of prices is decreasing in κ , because lower κ creates more miscoordination in supplies across competitors.
- When $\delta=1$, total supply of each producer independent of θ , hence price volatility disappears.

General Model

- Suppose we have *n* conventional generators.
- The availability of wind at generator *i* is given by $R_i = R/n + \theta_i$, where $\theta_i \sim \mathcal{N}(0, \sigma^2)$ (each generator owns δR_i units of wind).
- The covariance matrix of $(\theta_1, \ldots, \theta_n)$ is given by

$$\Sigma \equiv \sigma^2 \begin{pmatrix} 1 & \kappa_{1,2} & \cdots & \kappa_{1,n} \\ \kappa_{2,1} & 1 & \cdots & \kappa_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \kappa_{n,1} & \kappa_{n,2} & \cdots & 1 \end{pmatrix}$$

where $\kappa_{i,j}$ is inversely proportional to the distance between wind farms of generators i and j.

Equilibrium

Proposition

There exists a unique pure-strategy perfect Bayesian equilibrium (PBE) in linear strategies in which each generator i produces

$$q_i(\theta_i) = \frac{n}{n^2 + 1} \left(\alpha - R - \frac{\delta R}{n^2} - \gamma \right) - a_i \theta_i$$

where $\mathbf{a} = A^{-1}\mathbf{v}$, $A = \frac{1}{\sigma^2}\Sigma + I$, I is the identity matrix, and each element of the vector $\mathbf{v} = (v_1, v_2, \dots, v_n)^T$ is given by $v_i = 1 + \delta + \sum_{i \neq i} \kappa_{i,j}$. The resulting price satisfies

$$E[p] = \frac{1}{n^2 + 1}(\alpha - R + \delta R + n^2 \gamma),$$

$$Var(p) = \boldsymbol{a}^T \Sigma \boldsymbol{a} - 2\boldsymbol{a}^T \Sigma \boldsymbol{1} + \boldsymbol{1}^T \Sigma \boldsymbol{1}$$

Conclusions

- We presented an oligopoly model with conventional and wind energy.
- We studied the effect of diversification of energy portfolio of conventional generators on spot market prices.
- Ongoing Work and Extensions:
 - Effect of "network structure" of wind farms on price volatility.
 - Optimal pricing when renewable generators have incentive to hold back their supply:
 - Oligopoly pricing with stochastic and correlated capacity constraints.
 - Market design to reduce prices and price volatility.
 - Transmission constraints:
 - Introduce power flow constraints and treat each bus separately.
 - Price will be location dependent: Locational Marginal Pricing (LMP).