

Residential Demand Response – A Case Study in California

Datong Paul Zhou, Maximilian Balandat, Claire Tomlin UC Berkeley, CA, USA

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- $\bullet\,$ Smart grid technologies $\rightarrow\,$ utilities and end-use customers

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- $\bullet\,$ Smart grid technologies $\rightarrow\,$ utilities and end-use customers

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011: FERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- \bullet Smart grid technologies \rightarrow utilities and end-use customers

Residential Demand Response with Proxy Demand Resources

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011: FERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- \bullet Smart grid technologies \rightarrow utilities and end-use customers

Residential Demand Response with Proxy Demand Resources

Wholesale Market 🥯

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011: FERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- \bullet Smart grid technologies \rightarrow utilities and end-use customers

Residential Demand Response with Proxy Demand Resources

Wholesale Market 🥯

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011: FERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- \bullet Smart grid technologies \rightarrow utilities and end-use customers

Residential Demand Response with Proxy Demand Resources

Wholesale Market 🍣

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011: FERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- \bullet Smart grid technologies \rightarrow utilities and end-use customers

Residential Demand Response with Proxy Demand Resources

Wholesale Market 💝

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011: FERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- \bullet Smart grid technologies \rightarrow utilities and end-use customers

Residential Demand Response with Proxy Demand Resources

Wholesale Market Electric Utility Suff 2007

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011: FERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- \bullet Smart grid technologies \rightarrow utilities and end-use customers

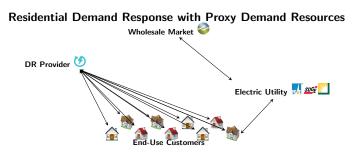
DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011: FERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling


July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- $\bullet\,$ Smart grid technologies $\rightarrow\,$ utilities and end-use customers

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011: FERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- $\bullet\,$ Smart grid technologies $\rightarrow\,$ utilities and end-use customers

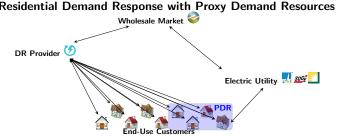
DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011: FERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling


July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- Smart grid technologies → utilities and end-use customers

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011 EERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

February 2016: Supreme Court Ruling to uphold FERC Order 745

Residential Demand Response with Proxy Demand Resources

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- Smart grid technologies → utilities and end-use customers

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

March 2011 EERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

Ancillary Services

- Operations beyond generation and transmission to maintain grid stability
 - Spinning reserves
 - Non-spinning (supplemental) reserves
 - Frequency control

Paradigm Shift

- Traditionally: Provided by generators
- Smart grid technologies → utilities and end-use customers

DR Policies

October 2008: FERC Order 719 Introduction of DR for Ancillary Services

September 2009: CAISO introduces Proxy Demand Resource Product

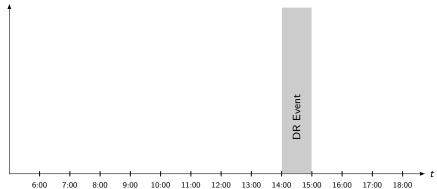
March 2011 EERC Order 745 Market Rules for DR

May 2015: FERC Order 745 vacated by Circuit Court Ruling

July 2015: CPUC Resolution E-4728: Demand Response Auction Mechanism

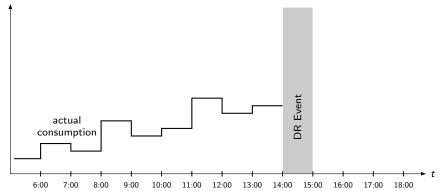
Fundamental Problem of Causal Inference

Fundamental Problem of Causal Inference

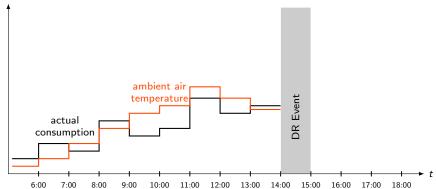

• Observe either y_{it}^0 or y_{it}^1 : $y_{it} = y_{it}^0 + D_{it} \cdot (y_{it}^1 - y_{it}^0) \quad \forall \ t \in \mathbb{T}$

Fundamental Problem of Causal Inference

- Observe either y_{it}^0 or y_{it}^1 : $y_{it} = y_{it}^0 + D_{it} \cdot (y_{it}^1 y_{it}^0) \quad \forall \ t \in \mathbb{T}$
- To estimate reduction, we need to estimate \hat{y}_{it}^0


Fundamental Problem of Causal Inference

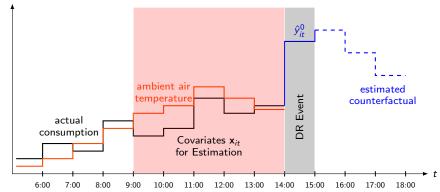
- Observe either y_{it}^0 or y_{it}^1 : $y_{it} = y_{it}^0 + D_{it} \cdot (y_{it}^1 y_{it}^0) \quad \forall \ t \in \mathbb{T}$
- To estimate reduction, we need to estimate \hat{y}_{it}^0


Fundamental Problem of Causal Inference

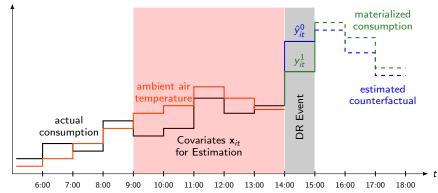
- Observe either y_{it}^0 or y_{it}^1 : $y_{it} = y_{it}^0 + D_{it} \cdot (y_{it}^1 y_{it}^0) \quad \forall \ t \in \mathbb{T}$
- To estimate reduction, we need to estimate \hat{y}_{it}^0

Fundamental Problem of Causal Inference

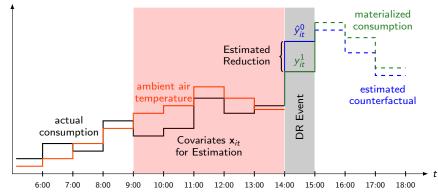
- Observe either y_{it}^0 or y_{it}^1 : $y_{it} = y_{it}^0 + D_{it} \cdot (y_{it}^1 y_{it}^0) \quad \forall \ t \in \mathbb{T}$
- To estimate reduction, we need to estimate \hat{y}_{it}^0


Fundamental Problem of Causal Inference

- Observe either y_{it}^0 or y_{it}^1 : $y_{it} = y_{it}^0 + D_{it} \cdot (y_{it}^1 y_{it}^0) \quad \forall \ t \in \mathbb{T}$
- To estimate reduction, we need to estimate \hat{y}_{it}^0


Fundamental Problem of Causal Inference

- Observe either y_{it}^0 or y_{it}^1 : $y_{it} = y_{it}^0 + D_{it} \cdot (y_{it}^1 y_{it}^0) \quad \forall \ t \in \mathbb{T}$
- To estimate reduction, we need to estimate \hat{y}_{it}^0


Fundamental Problem of Causal Inference

- Observe either y_{it}^0 or y_{it}^1 : $y_{it} = y_{it}^0 + D_{it} \cdot (y_{it}^1 y_{it}^0) \quad \forall \ t \in \mathbb{T}$
- To estimate reduction, we need to estimate \hat{y}_{it}^0

Fundamental Problem of Causal Inference

- Observe either y_{it}^0 or y_{it}^1 : $y_{it} = y_{it}^0 + D_{it} \cdot (y_{it}^1 y_{it}^0) \quad \forall \ t \in \mathbb{T}$
- To estimate reduction, we need to estimate \hat{y}_{it}^0

Randomized Controlled Trial (RCT)

Why?

- RCT as experimental gold standard
- Goal: Estimate treatment effects of DR in non-experimental fashion
- Idea: Benchmark non-experimental estimates against ground truth RCT

Experiment funded by CEC and carried out by OhmConnect, Inc.

- \approx 10,000 users, November 2016 December 2017.
- Reward levels randomly chosen from $\{0.05, 0.25, 0.50, 1.00, 3.00\}$

Figure: Setup of Experiment

Randomized Controlled Trial (RCT)

Why?

- RCT as experimental gold standard
- Goal: Estimate treatment effects of DR in non-experimental fashion
- Idea: Benchmark non-experimental estimates against ground truth RCT

Experiment funded by CEC and carried out by OhmConnect, Inc.

- \approx 10,000 users, November 2016 December 2017.
- Reward levels randomly chosen from $\{0.05, 0.25, 0.50, 1.00, 3.00\}$ KWb

Figure: Setup of Experiment

Randomized Controlled Trial (RCT)

Why?

- RCT as experimental gold standard
- Goal: Estimate treatment effects of DR in non-experimental fashion
- Idea: Benchmark non-experimental estimates against ground truth RCT

Experiment funded by CEC and carried out by OhmConnect, Inc.

- \approx 10,000 users, November 2016 December 2017.
- Reward levels randomly chosen from $\{0.05, 0.25, 0.50, 1.00, 3.00\}$ KWb

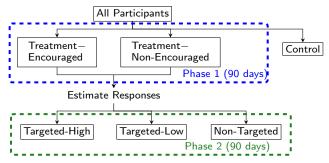
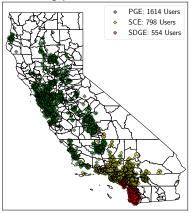
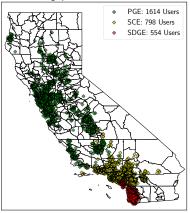
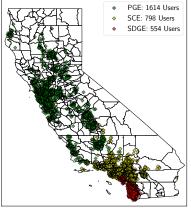



Figure: Setup of Experiment

Historical Smart Meter Data Availability by Group			
Group	# Enrolled	# W∕ Data	% W/ Data
Control	2,181	785	36.0
Treatment — Enc.	4,626	1,802	39.0
${\sf Treatment-Non-Enc.}$	4,613	1,820	39.5


Historical Smart Meter Data Availability by Group			
Group	# Enrolled	# W∕ Data	% W/ Data
Control	2,181	785	36.0
Treatment — Enc.	4,626	1,802	39.0
${\sf Treatment-Non-Enc.}$	4,613	1,820	39.5

Geographic Distribution of Users


Historical Smart Meter Data Availability by Group			
Group	# Enrolled	# W∕ Data	% W/ Data
Control	2,181	785	36.0
Treatment – Enc.	4,626	1,802	39.0
Treatment – Non-Enc.	4,613	1,820	39.5

Geographic Distribution of Users

Historical Smart Meter Data Availability by Group				
Group	# Enrolled	# W∕ Data	% W/ Data	
Control	2,181	785	36.0	
Treatment – Enc.	4,626	1,802	39.0	
${\sf Treatment-Non-Enc.}$	4,613	1,820	39.5	
Geographic Distribution of Users				
		DCE: 1614 Users		

Historical Sm	art Meter Data	Availability by Gro	up		
Group	# Enrolled	# ₩/ Data	% W/ Data		
Control	2,181	785	36.0		
Treatment — Enc.	4,626	1,802	39.0		
Treatment – Non-Enc.	4,613	1,820	39.5		
Geographic	Geographic Distribution of Users				
	•	PGE: 1614 Users	1 I		
19(25524)		SCE: 798 Users			
	-				
ALLA CLA	· ·	SDGL. 334 Users			
157-X-723	-				
	1				
- Home and a	4				
LE SS ST	1				
KER ST					
H & BERT	~~~>				
	*× \				
	$X \land \rightarrow$	、 、			
	5	\nearrow			
And A		$\gamma $			
	L-446.871				
	~~~~~/_				
		ss. /			
			51		
<b>^</b>	500 - THE REAL				
	· ~ ~	$\mathcal{C}$			
	6	<b>X</b> (2)			







# Results for Nonexperimental Estimators

#### Treatment Effects

- Nonexperimental Estimation admits *Individual Treatment Effects* (ITEs)
- Aggregation of ITEs yields Average Treatment Effect (ATE)
- Use bootstrapping to construct unit-level confidence intervals

Results (Nov 2016 - April 2017)

- ATE is -0.033kWh (-4.7%)
- 95% confidence interval: [-0.048, -0.019]kWh
- Automated vs. non-automated users: -9.9% vs. -4.3%.

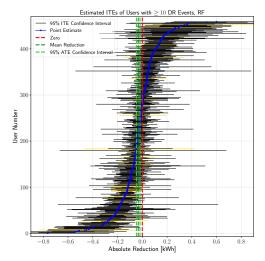
# Results for Nonexperimental Estimators

#### Treatment Effects

- Nonexperimental Estimation admits *Individual Treatment Effects* (ITEs)
- Aggregation of ITEs yields Average Treatment Effect (ATE)
- Use bootstrapping to construct unit-level confidence intervals

## Results (Nov 2016 - April 2017)

- ATE is -0.033kWh (-4.7%)
- 95% confidence interval: [-0.048, -0.019]kWh
- Automated vs. non-automated users: -9.9% vs. -4.3%.


# Results for Nonexperimental Estimators

### Treatment Effects

- Nonexperimental Estimation admits *Individual Treatment Effects* (ITEs)
- Aggregation of ITEs yields Average Treatment Effect (ATE)
- Use bootstrapping to construct unit-level confidence intervals

### Results (Nov 2016 - April 2017)

- ATE is -0.033kWh (-4.7%)
- 95% confidence interval: [-0.048, -0.019]kWh
- Automated vs. non-automated users: -9.9% vs. -4.3%.



### **Fixed Effect Model**

• Regression specification:

$$kWh_{it} = X_{it}\beta + \alpha_{it} + u_{it}.$$
 (1)

• Fixed effects term  $\alpha_{it}$  removes persistent differences across users:

$$\alpha_{it} \sim C(HoD_{it}) : C(is_Bday_{it}) + C(MoY_{it}).$$
 (2)

• Estimation by Incentive Level:

$$X_{it} = [\text{is_treat}_{it} \quad \text{BL}_{it} \quad T_{it} \quad R_{it}]$$
 (3a)

$$R_{it} = [\mathbb{1}(r_{it} = 0.05) \cdots \mathbb{1}(r_{it} = 3.00)]$$
 (3b)

Estimation by hour of the day:

$$X_{it} = [\text{is_treat}_{it} \quad \text{BL}_{it} \quad T_{it} \quad \text{C(HoD)} : \text{is_DR}_{it}]$$
(4)

$$X_{it} = \begin{bmatrix} \text{is_treat}_{it} & \text{BL}_{it} & T_{it} & \text{C(MoY)} : \text{is_DR}_{it} \end{bmatrix}.$$
(5)

### **Fixed Effect Model**

• Regression specification:

$$kWh_{it} = X_{it}\beta + \alpha_{it} + u_{it}.$$
(1)

• Fixed effects term  $\alpha_{\it it}$  removes persistent differences across users:

 $\alpha_{it} \sim C(HoD_{it}) : C(is_Bday_{it}) + C(MoY_{it}).$ (2)

Estimation by Incentive Level:

$$X_{it} = \begin{bmatrix} \text{is_treat}_{it} & \text{BL}_{it} & T_{it} & R_{it} \end{bmatrix}$$
(3a)

$$R_{it} = [\mathbb{1}(r_{it} = 0.05) \quad \cdots \quad \mathbb{1}(r_{it} = 3.00)]$$
(3b)

Estimation by hour of the day:

$$X_{it} = [\text{is_treat}_{it} \quad \text{BL}_{it} \quad T_{it} \quad \text{C(HoD)} : \text{is_DR}_{it}]$$
(4)

$$X_{it} = \begin{bmatrix} \text{is_treat}_{it} & \text{BL}_{it} & T_{it} & \text{C(MoY)} : \text{is_DR}_{it} \end{bmatrix}.$$
(5)

### **Fixed Effect Model**

• Regression specification:

$$kWh_{it} = X_{it}\beta + \alpha_{it} + u_{it}.$$
(1)

• Fixed effects term  $\alpha_{it}$  removes persistent differences across users:

 $\alpha_{it} \sim C(HoD_{it}) : C(is_Bday_{it}) + C(MoY_{it}).$ (2)

• Estimation by Incentive Level:

$$X_{it} = [\text{is}_{\text{treat}_{it}} \quad \text{BL}_{it} \quad T_{it} \quad R_{it}]$$
 (3a)

$$R_{it} = [\mathbb{1}(r_{it} = 0.05) \quad \cdots \quad \mathbb{1}(r_{it} = 3.00)]$$
 (3b)

Estimation by hour of the day:

$$X_{it} = \begin{bmatrix} is_treat_{it} & BL_{it} & T_{it} & C(HoD) : is_DR_{it} \end{bmatrix}$$
(4)

$$X_{it} = \begin{bmatrix} \text{is_treat}_{it} & \text{BL}_{it} & \mathcal{T}_{it} & \text{C(MoY)} : \text{is_DR}_{it} \end{bmatrix}.$$
(5)

#### Fixed Effect Model

• Regression specification:

$$kWh_{it} = X_{it}\beta + \alpha_{it} + u_{it}.$$
(1)

• Fixed effects term  $\alpha_{it}$  removes persistent differences across users:

 $\alpha_{it} \sim C(HoD_{it}) : C(is_Bday_{it}) + C(MoY_{it}).$ (2)

• Estimation by Incentive Level:

$$X_{it} = [\text{is}_{\text{treat}_{it}} \quad \text{BL}_{it} \quad T_{it} \quad R_{it}]$$
 (3a)

$$R_{it} = [\mathbb{1}(r_{it} = 0.05) \cdots \mathbb{1}(r_{it} = 3.00)]$$
 (3b)

• Estimation by hour of the day:

$$X_{it} = \begin{bmatrix} \text{is_treat}_{it} & \text{BL}_{it} & T_{it} & \text{C(HoD)} : \text{is_DR}_{it} \end{bmatrix}$$
(4)

Estimation by month of the year:

 $X_{it} = [ ext{is_treat}_{it} \quad ext{BL}_{it} \quad \mathcal{T}_{it} \quad ext{C(MoY)} : ext{is_DR}_{it}].$ 

#### **Fixed Effect Model**

• Regression specification:

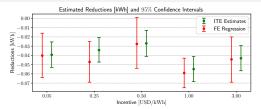
$$kWh_{it} = X_{it}\beta + \alpha_{it} + u_{it}.$$
(1)

• Fixed effects term  $\alpha_{it}$  removes persistent differences across users:

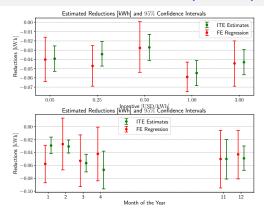
 $\alpha_{it} \sim C(HoD_{it}) : C(is_Bday_{it}) + C(MoY_{it}).$ (2)

• Estimation by Incentive Level:

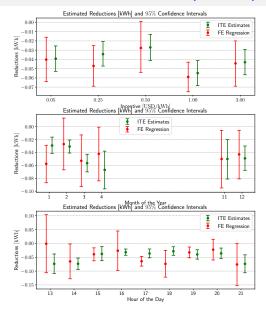
$$X_{it} = \begin{bmatrix} is_treat_{it} & BL_{it} & T_{it} & R_{it} \end{bmatrix}$$
(3a)


$$R_{it} = [\mathbb{1}(r_{it} = 0.05) \cdots \mathbb{1}(r_{it} = 3.00)]$$
 (3b)

• Estimation by hour of the day:


$$X_{it} = \begin{bmatrix} \text{is_treat}_{it} & \text{BL}_{it} & T_{it} & \text{C(HoD)} : \text{is_DR}_{it} \end{bmatrix}$$
(4)

$$X_{it} = \begin{bmatrix} \text{is_treat}_{it} & \text{BL}_{it} & T_{it} & \text{C(MoY)} : \text{is_DR}_{it} \end{bmatrix}.$$
(5)


# Results for Fixed-Effects Estimation (cont'd.)



# Results for Fixed-Effects Estimation (cont'd.)



## Results for Fixed-Effects Estimation (cont'd.)



# Summary and Outlook

#### Summary

- Estimation of causal effect of Demand Response intervention on reduction of electricity usage
- Nonexperimental estimation framework
- Fixed Effects model

# Summary and Outlook

#### Summary

- Estimation of causal effect of Demand Response intervention on reduction of electricity usage
- Nonexperimental estimation framework
- Fixed Effects model

### Next Steps

- Evaluate effect of adaptive targeting on payout to users
- Idea: Utilize heterogeneity of users to make "better decisions"

# THANK YOU! QUESTIONS?