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Abstract—Today’s smartphones and mobile devices typically 
embed advanced motion sensors. Due to their increasing 
market penetration, there is a potential for the development 
of distributed sensing platforms. In particular, over the last 
few years there has been an increasing interest in monitor-
ing vehicles and driving data, aiming to identify risky driv-
ing maneuvers and to improve driver efficiency. Such a driver 
profiling system can be useful 
in fleet management, insur-
ance premium adjustment, fuel 
consumption optimization or 
CO2 emission reduction. In this 
paper, we analyze how smart-
phone sensors can be used to 
identify driving maneuvers and 
propose SenseFleet, a driver pro-
file platform that is able to detect 
risky driving events indepen-
dently from the mobile device 
and vehicle. A fuzzy system is 
used to compute a score for the 
different drivers using real-time 
context information like route 
topology or weather conditions. 
To validate our platform, we 
present an evaluation study con-
sidering multiple drivers along a 
predefined path. The results show that our platform is able to 
accurately detect risky driving events and provide a represen-
tative score for each individual driver.

I. Introduction

D
riving behavior profiling has an increasing rel-
evance in different application contexts. For 
instance, in the fleet management domain, fleet 
administrators are interested in fine-grained infor-

mation about fleet usage, which is influenced by different 
driver usage patterns. In the car insurance market, Usage-

Based Insurance (UBI) or Pay-
As-You-Drive (PAYD) schemes 
aim to adapt the insurance 
premium to individual driver 
behavior. In order to track driver 
behavior, dedicated telemat-
ics boxes have been introduced 
(e.g., Ingenie [1], Fairpay [2]) to 
log different sensing variables 
and driving events. The infor-
mation logged by these boxes 
can then be manually retrieved 
or sent over the Internet through 
a wireless connection. However, 
the main drawbacks of such sys-
tems are their high initial cost 
and low customer acceptance, 
which limit wide and rapid plat-
form deployment.

Due to increasing sensing 
capacities and the proliferation of mobile devices like tab-
lets and smartphones (e.g., accelerometers, magnetometers, 
GPS), smartphone-based telematics systems are gaining 
increasing attention. In the car-insurance market, Aviva 
RateMyDrive [3], StateFarm DriverFeedback [4] and AXA 
Drive (in Belgium) [5] appear to be the most popular mobile 
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applications for iOS and Android. In the case of RateMyDrive 
and DriverFeedback, the provided score is used as an input 
to adjust the insurance premium, providing up to 20% dis-
count. In contrast, Greenroad [6] is an online platform for 
fleet management. In this platform, drivers use the sensing 
application and regularly send driving traces to the system, 
which aggregates metrics from different drivers to provide 
fleet administrators with a description of individual riski-
ness, eco-driving and fleet usage information (e.g., fuel con-
sumption, CO2 emissions).

In our previous work [7] [8], we analyzed the capabilities 
of smartphones to profile drivers. We studied the output of 
smartphone sensors and GPS under risky and normal driv-
ing conditions in order to provide the driver with a score. In 
the platform proposed in this paper, we focus on detecting 
risky driving events rather than analyzing driving traces as 
a whole and calculating a score at the end of the trip. By 
detecting events, we are able to provide the driver with 
immediate feedback so as to allow him to adapt his driv-
ing. However, the heterogeneity of existing smartphone 
sensing hardware and vehicle characteristics prevents the 
definition of fixed rules to profile drivers. To address this 
issue, we propose a fuzzy logic mechanism to detect risky 
driving events, including over-speed, acceleration, braking 
and steering. In order for the system to provide meaningful 
results, we have implemented an adaptive profiling mecha-
nism that works independently of the type of mobile phone 
and car. For each driver we collect an initial dataset and 
perform a statistical analysis to identify event thresholds. 
We also propose a scoring process that assigns different 
levels of riskiness to driving events depending on the road 
topology and weather information. The fuzzy logic event 
detection mechanism is implemented in an Android appli-
cation. In this paper we present an evaluation study that 
analyzes the driving profiles of multiple participants and 
computes a representative score reflecting the risk factors 
for each driver.

SenseFleet is a new smartphone-based driver profiling 
platform. Compared to existing tools, SenseFleet adaptive 
profiling can correctly detect risky driving events, indepen-
dently of the mobile device and vehicle used, by performing 
a statistical analysis on the data collected by each driver. 
This allows the identification of dynamic event thresholds 
that are unique for each driver. Moreover, because of the 
way sensing data is considered in SenseFleet, there is no 
restriction on the initial positioning and orientation of the 

device. By fusing a variety of sens-
ing data, the device can be manipu-
lated and its orientation changed 
when the vehicle is stopped without 
introducing any bias in the mea-
surement which would negatively 
impact event detection.

The remainder of this paper 
is organized as follows. In Section II we discuss potential 
uses of such a platform. In Section III we present the related 
work on smartphone-based driver profiling tools. Then, in 
Section IV, we provide the details on our platform, includ-
ing event detection and driver scoring mechanisms. In Sec-
tion V, we present an evaluation study of the SenseFleet plat-
form. For this study we consider different drivers following 
a single path using an electric vehicle in order to analyze 
the event detection and scoring performance and also the 
effect of using different phones and specific parameters for 
the application. Finally in Section VI we present a discussion 
of open issues and in Section VII we conclude the paper.

II. Driver Monitoring: Potential Usages
Driver monitoring and profiling with mobile devices is an 
emerging trend that suits the needs of multiple markets. A 
potential market is car insurance, which has been inter-
ested in monitoring driving activities in order to provide 
fair insurance premiums to its customers. This concept 
is referred to as Pay As You Drive (PAYD) or Usage Based 
Insurance (UBI) [9]. While there has been an interest in 
UBI in the past, most solutions have focused on telemat-
ics systems (e.g., black boxes), that must be fixed into the 
car to gather a number of parameters that classify drivers. 
Such systems have not succeed for several reasons. First, 
telematics boxes imply an investment for insurance com-
panies, not only to provide the boxes and communication 
links to their clients but also to maintain them. Experi-
ence shows that drivers have been reluctant to accept such 
equipment because they disliked being observed. A study 
carried out by Delloite [10] confirms that 58% of young 
drivers in the UK do not want to use telematics boxes. In 
the case of smartphone-based driver monitoring, costs are 
greatly reduced since all it requires is the installation of 
a mobile application on the driver’s personal device. Also, 
since there is a trust relation between drivers and their 
personal mobile devices, users may be less averse to smart-
phone-based monitoring, since they have an increased 
level of control over the monitoring service.

A second potential application of smartphone-based 
driver monitoring is the fleet management market. Logis-
tics fleet administrators need to know how their vehicles 
are being used and how their drivers behave in order to 
mitigate potential risks and reduce operational costs. 
Nowadays, there are numerous solutions that are based on 
telematics boxes, mostly to record the distance driven and 
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the speed distribution. Corporate smartphones can serve an 
additional purpose by replacing legacy telematics systems. 
Further, the trend to closely integrate mobile devices with 
the on-board systems will allow additional information to 
be retrieved from the vehicle. One possibility is to use On-
Board Diagnosis (OBD-II) adapters that can be plugged into 
the vehicle’s Controller Area Network (CAN) and wirelessly 
transmit relevant vehicle information to the smartphone 
(e.g., speed, fuel consumption, engine load, fault codes). 
Then, using the Internet connection of the smartphone, 
fleet administrators may access real-time vehicle and driver 
information in order to optimize logistics and reduce overall 
fuel consumption.

III. Related Work
In this section, we introduce some existing driver profil-
ing systems based on smartphone sensing data. Eren et al. 
[11] designed a driver classification algorithm that distin-
guishes between risky and safe drivers. They considered 
smoothed acceleration, gyroscope and magnetometer data 
from smartphones to detect start and end times for driving 
events (e.g., sudden maneuvers, aggressive steering, brak-
ing or acceleration) using a moving average algorithm and 
empirical thresholds. The authors computed the similar-
ity of each event to template data (i.e., for risky and safe 
event patterns that had been previously collected) using 
Dynamic Time Warping (DTW) and used Bayesian clas-
sification to decide whether the driver was risky or safe. 
They present an evaluation study for fifteen drivers using 
iPhone devices and fixed departure and arrival points, 
showing a successful classification rate of 93.3%. John-
son et al. [12] also proposed a DTW-based driver profile 
algorithm, MIROAD, using smartphone sensors, GPS and 
camera. Their work evaluated the performance of differ-
ent sensor fusion sets to detect lateral and longitudinal 
movements. After evaluating over 200 driving events, the 
authors showed that the sensor fusion set composed of the 
x-axis (i.e., gravity axis) rotation rate, y-axis (i.e., lateral 
movements) acceleration and pitch provide the best clas-
sification performance using DTW.

Paefgen et al. [13] focus on the precision of smartphone 
sensing data for an analysis of driver behavior mainly 
oriented towards insurance market. After a calibration 
process, in which the user manually sets the main direc-
tion of the vehicle, the mobile application starts collecting 
acceleration, braking and steering events. These events are 
triggered if the sensing data surpasses some predefined 
thresholds (e.g., . g0 1  for acceleration and braking and 
. g0 2  for steering). The authors presented a measurement 

study to compare event detection using smartphone sensors 
against a fixed telematics box based on an internal Inertial 
Measurement Unit (IMU). They observed that the obtained 
event count distribution matched different statistical distri-
butions, which was mainly due to variations in smartphone-

to-car fixing and positioning inside the vehicle. However, 
the authors found some correlations between smartphones 
and IMU-based events and described some possible sources 
of error.

You et al. [14] describe CarSafe, a smartphone applica-
tion which fuses information from front and rear cameras, 
sensors and GPS to detect dangerous driving events. In par-
ticular, the authors showed that drowsiness (one of the main 
causes of car accidents [15]) can be detected using the front 
camera and image processing algorithms with an accuracy 
of 85%.

With the aim of providing drivers with useful hints to 
reduce energy consumption, Araujo et al. [16] developed a 
smartphone application that combines GPS and CAN-bus 
information (using an OBD-II device). Some of the possi-
ble hints are to switch off the engine, to shift gears earlier 
or to decelerate. As input data, they considered average, 
minimum and maximum values for speed, acceleration 
and fuel consumption, which they combined using a fuzzy 
system. They evaluated and validated their algorithms 
using a mobile platform and several experiments on a 
single car.

Also based on smartphones, Mohan et al. describe Neri-
cell [17]. In this work, they focus not on driver behavior 
analysis and profiling but rather on using acceleration, 
microphone and GPS data to detect the road’s quality (e.g., 
presence of potholes, bumps) and traffic condition (e.g., 
stop-and-go, fluid). However the techniques for acceleration 
and braking event detection presented in their paper are 
also suitable for the driver profiling problem.

Fazeen et al. [18] highlight the concept of feedback when 
monitoring drivers in order to effectively correct bad driv-
ing habits and behaviors. They collected a set of experimen-
tal data to analyze the detection of acceleration, braking 
and lane-changing events. In their experiments, they care-
fully fixed the phone in predefined positions inside the car 
by always keeping the device parallel to the floor, with the 
top of the device pointing forward. This facilitates the iden-
tification of driving events, since longitudinal and lateral 
acceleration samples exactly match the x  and y  axes of the 
device’s coordinate system, this way no coordinates trans-
formation is needed. In order to classify driving events, they 
considered the acceleration variation (jerk) and a maximum 
acceleration threshold. However, the need to fix the device’s 
position limits the usability of the proposed platform, since 
a slight modification of the phone orientation (e.g., user 
manipulation, device vibration) considerably impacts the 
event classification performance.

As it has been presented, existing solutions for event 
detection are commonly based on fixed thresholds for the 
different input variables used to detect acceleration, brak-
ing or steering events. To overcome this limitation, we pro-
pose an adaptive profiling mechanism that consist in a cali-
bration phase that will dynamically set up input variable 
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thresholds by performing statistical analysis. In the follow-
ing we introduce our solution and evaluate its performance 
through experimentation.

IV. Risky Event Detection and Scoring
In this section, we describe SenseFleet, the proposed event 
detection and scoring platform. As illustrated in Fig. 1, the 
event detection algorithm considers the output of motion 
sensors and GPS. Acceleration, braking and steering 
events are detected using fuzzy logic. Moreover, we con-
sider overspeed events by considering real speed limits 
for each particular road. During a single trip, these events 
are combined with weather information and time-of-day 
to better determine the riskiness of the events and score 
the driver.

A. Application Platform: SenseFleet
As shown in Fig. 1, this application includes the event 
detector and the scoring mechanisms. It stores event detec-
tion and scoring data in an internal SQLite database. The 
traces generated for single or multiple trips can be remotely 
pulled to a central server, which aggregates data from dif-
ferent trips and drivers for further analysis and reporting. 
SenseFleet’s user interface shows the overall score for all 
the trips and the relative distribution of event types. The 
driver can also see the instantaneous score and event rate 

for the current trip. Each time an 
event is detected, a sound and text 
notification is triggered by the 
application. Moreover, the user has 
the possibility to analyze his driver 
performance offline, through the 
mobile application or a web-based 
dashboard.

B. Fuzzy Logic Based Event Detection
Existing driver profiling mechanisms are generally based 
on multiple input data and fixed-threshold based event 
detection. For example, over-speed events are triggered if 
the vehicle’s instantaneous speed is greater than 120 km/h 
[6], which is unrealistic for example in motorway scenar-
ios, where speed limits can vary due to different type of 
roads. Commercial applications like Greenroad [6] also 
rely on GPS and smartphone sensor data to detect events. 
In this application, the score is then simply calculated as 
an event rate, i.e., the number of events per unit of distance 
that the application has counted. In this case, all types of 
events have the same relevance for scoring and are simply 
merged in a global event counter.

In SenseFleet we consider GPS and motion sensor input 
data simultaneously. As illustrated in Fig. 2, the internal 
linear accelerometer is used to compute the jerk (i.e., the 
rate of change of the acceleration with respect to time). 
We consider the output of the device’s accelerometer, 
( ) ( ), ( ), ( )a t a t a t a tx y z=6 @ in / ,m s2  and the magnitude of 

the acceleration vector as described in Eq. 1.

	 | ( ) | ( ) ( ) ( )a t a t a t a tx y z
2 2 2= + + � (1)

Initially, we tried to infer longitudinal and lateral 
movements of the car by considering each acceleration 

axis independently. For this purpose, 
we translated the acceleration vec-
tor to the Earth coordinate system in 
order to be coherent with the vehi-
cle’s trajectory. However, even when 
those signals were filtered (using 
Kalman filters) it was not possible 
to clearly decompose vehicle’s longi-
tudinal and lateral movements from 
this output. We then decided to com-
pute the magnitude of the accelera-
tion vector to mitigate this problem. 
Note that the magnitude is invari-
ant with regards to the coordinate 
system (e.g., device, Earth), which 
allows device rotation or manipu-
lation when the driver is using the 
application and the vehicle stopped.
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Finally, jerk ( j ) is calculated as the time derivative of the 
acceleration magnitude (see Eq. 2).

	 ( )
| ( ) |

j t dt
d a t

= � (2)

Having computed jerk, in order to have a measure of the 
vehicle’s direction variation (yaw rate) we use the device’s 
magnetic and gravity sensors to compute the orientation 
vector. This vector includes the yaw, pitch and roll, which 
that characterize rotation around the different axes. In our 
application, we consider the yaw rate, ,y  to measure the 
vehicle’s steering as the rotation around the axis perpen-
dicular to the earth surface.

A major limitation of motion sensors (e.g., accelerometer, 
magnetic sensor and gravity sensor) is the high exposure to 
noise, which is mainly due to electromagnetic interference 
and device vibration [19]. For this reason, in the proposed 
mechanism we fuse motion sensor data with GPS data in 
order to accurately detect driving events. In particular for 
GPS-based metrics, we consider speed variation ( )SD  and 
bearing variation ( ).BD  Note that GPS data is obtained at a 
sampling rate of 1 Hz and that the speed variation is com-
puted as the difference between two consecutive samples 
(see Eq. 3).

	 ( ) ( )S S t S t 1D = - - � (3)

Similarly, the bearing variation (i.e., the variation in the 
relative angle to the north, measured in /sc ) is calculated 
as in Eq. 4.

	 ( ) ( )B B t B t 1D = - - � (4)

The different input variables are obtained at different 
sampling rates. In the case of motion sensors, the sampling 
rate varies between 20 and 50 Hz, depending on the device 
hardware and operating system version. To mitigate these 
effects, we implemented a Sensor Fusion layer that synchro-
nizes motion sensors and GPS samples in order to perform 
event detection based on different time series. Given that 
GPS samples are received at a fixed rate of 1 Hz, we store 
j  and y  samples over the last second. Then, for each GPS 

location fix, we compute SD  and ,BD  the average yaw rate  
( yn^ h), and the jerk standard deviation .jv^ ^ hh  We consider 
the jerk standard deviation instead of raw jerk or accelera-
tion in order to further mitigate the effect of device vibra-
tion during the measurements while driving. We observed 
after several trials that during an acceleration, braking or 
steering event, the jerk standard deviation showed a clearer 
variation than the total acceleration or the average jerk.

As shown in Fig. 2, in order to detect driving events, we 
set up a fuzzy system [20] that consists of a fuzzification 
phase of the input data (i.e., , , ,j y S Bv n D D^ ^h h6 @) and the 
application of a set of fuzzy rules. Each rule evaluates a 

combination of different possible fuzzy values of the input 
variables and outputs a type of event (e.g., hard accelera-
tion, hard braking, aggressive steering, over-speeding). The 
rules were manually derived after analyzing input variable 
values in a controlled scenario, considering different types 
of maneuvers. For the input variable fuzzification process, 
we consider trapezoid membership functions. For the output 
variable, we consider a single crisp value for each different 
type of event to allow the center-of-gravity defuzzification 
process to detect events individually. The fuzzy sets for the 
variables are stated in Table 1. For the fuzzy system imple-
mentation we used jFuzzyLogic [21], an open source fuzzy 
logic implementation for Java. However, as discussed below, 
the limits for those sets are dynamically established after a 
calibration process.

The fuzzy rules indicate the specific conditions for an 
event to be triggered. As an example, in order to detect hard 
acceleration, the system considers the following rule:

IF
( ( )jv  IS HIGH OR ( )jv  IS VERY-HIGH) AND
( ( )yn  IS LOW) AND
( BD  IS LOW) AND
( SD  IS HIGH-ACC)
THEN
event IS ACCELERATION

As shown in the example, in order to trigger an accel-
eration event, the system evaluates ( ), ( ),j y Bv n D  and .SD  
Note that the rule checks for a high speed variation and low 
yaw rate and bearing change.

1) Fuzzy Sets definition (Calibration phase): In order to 
detect events independently of the mobile device and dif-
ferent vehicle conditions, we carried out an initial calibra-
tion phase to establish the boundaries of the fuzzy member-
ship functions for input variables. In fact, different vehicles 
have different acceleration, braking and steering patterns, 
e.g., the accelerometer output of a small city car is different 
compared to a luxury sedan. Moreover, different smart-
phones embed different sensor chipsets that have differ-
ent sampling rates and magnitudes. As a consequence, it is 
necessary to calibrate the system to each particular vehicle 
and device. This process is performed the first time the 

Variable Sets

jv^ h LOW, MEDIUM, HIGH, VERY-HIGH

yn^ h LOW, MEDIUM, HIGH, VERY-HIGH

BD LOW, MEDIUM, HIGH, VERY-HIGH

SD HIGH-DEC, LOW-DEC, STABLE, LOW-ACC, HIGH-ACC

Table 1. Fuzzy sets.
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application is used by a single driver and vehicle. This cali-
bration phase consists in the collection of a fixed number 
of input samples and the computation of their cumulative 
distribution function. Each sample represents a collection 
of the input variables ( ), ( ), ,j y S Bv n D D6 @ at a given time. 
After the collection of the calibration samples, the system 
dynamically adjusts the fuzzy sets for the variables and 
starts the event detection and scoring phase. To this end, 
we consider different percentiles of the cumulative distri-
bution of ( )jv  and ( ),yn  representing the threshold values 
for event detection.

In more detail, the calibration process is segmented by 
speed ranges. This is to mitigate motion sensor’s noise due 
to vehicle’s speed. To this end, n  training samples are col-
lected for each of the following speed ranges (in km/h): 

: , , : , , : ,S S S0 30 30 60 60 901 2 3^ ^ ^@ @ @ and : , .S 904 3^ h  
These speed ranges were manually derived after several 
experimental trials. Note that the dynamic adjustment 
of the fuzzy sets is only done for jerk ( ( )jv ) and yaw rate 
( ( )),yn  since speed variation and bearing rate fuzzy sets 
can be fixed regardless of the mobile-device-specific hard-
ware and the vehicle characteristics. In Fig. 3a and 3b we 
show the cumulative distribution functions (CDF) for ( )jv  
and ( )yn  respectively. These distributions correspond to a 
calibration phase of 1500 samples using a Renault Twizy, 
an ultra-compact electric vehicle limited to 80 km/h maxi-
mum speed, and are then used to establish the limits of 
the fuzzy sets. Note that the highest jerk standard devia-
tion is observed in the second speed set (between 30 and 
60 km/h) and is lower at higher speeds, where the driver 
tends to have a more constant speed pattern (e.g., free-flow 
along an avenue or highway). In the case of the yaw rate, 
as expected, for an increasing speed, the angular veloc-
ity at intersections increases. In practice, the fuzzy limits 
for ( )jv  and ( )yn  (low, medium, high and very-high) are 
obtained from the CDFs by considering the last percen-
tiles of the distribution. This dynamic adaptation of the 
fuzzy sets in the calibration phase allows acceleration and 
steering events to be identified at different speeds. Also, 
as illustrated in Fig. 3c, this calibration process allows the 
fuzzy sets to be matched to the acceleration profiles of dif-
ferent car models, with differing power and suspension. 
In Fig. 3c, we used SenseFleet in a Samsung Galaxy Gio 
(S5660) smartphone and .n 1500=  The results show that 
the Renault Twizy has a considerably different distribu-
tion for ( ),jv  compared to the three internal combustion 
engine cars (Citroen C3, Renault Megane and Audi A5) due 
to stiffer suspensions in the former.

C. Driver Scoring
During a single trip, the user collects input data from 
motion sensors and GPS and the event detection system 
decides whether these samples correspond to a risky driv-
ing event or not. The device counts the different events 
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of different types. For each event, the device gathers the 
current weather condition and the time of day. To this 
end, we make use of the OpenWeatherMap API [22], which 
provides very detailed weather information through a web 
service, including rain and snow levels, temperature and 
humidity. Time of day is obtained by using sunrise and 
sunset information compared to current time. Weather 
is organized in JSON format and is obtained by simply 
requesting a web service and providing latitude and longi-
tude as parameters.

In SenseFleet, any single trip is scored with a value 
between 0 and 100 (being 100 the best possible score). When 
a trip starts, the driver gets 100 points. Then, when an event 
occurs the driver loses points depending on the type of event 
and its context (i.e., weather condition and time of day). 
Both weather condition and time of day were considered 
since their impact on fatal accident rates has been proven 
in different studies [23] [15]. For instance, as stated in [23], 
nighttime increases fatal accidents rate by a factor of five. 
In our platform, weather conditions can be normal, rain, 
storm, snow, fog or extreme. Possible values for daytime 
are day or night. Based on both variables, we defined four 
different severity levels for the events: low, medium, high 
and extreme. Each severity level corresponds to a number of 
points to be deducted from the score.

We assigned a greater severity level for events done dur-
ing nighttime and with bad weather conditions so there is 
a higher impact on the score than the case of events per-
formed in normal weather condition and daytime. Then, 
for each combination of event type and severity, the system 
reduces the score by a predefined number of points. On 
the other hand, if the driver style improves during the trip, 
points are earned if no events are detected.

V. Experimental Evaluation
We performed experimental evaluation of our platform. We 
focused on two main aspects, event detection and driver 
scoring. For each aspect we carried out a set of experiments 
considering two different testbeds. All the experiments have 
been carried out with similar traffic conditions.

A. Event Detection Accuracy
1) Testbed Setup: In order to measure the accuracy of the 
event detection, a single driver performed four different 
runs with a single car (Renault Twizy) using different num-
bers of samples for the calibration phase. The methodol-
ogy of the experiment consisted in counting the number of 
detected and undetected events of each type. In our previous 
work [8] we have performed a set of experiments to validate 
the capacity of smartphone sensors to detect driving maneu-
vers by comparing it to OBD-II vehicle data. In the proposed 
experiment, we focus on the accuracy of the proposed fuzzy 
logic event detection depending on the number of calibra-
tion samples.

2) Results: We considered four different values for the 
number of calibration samples and measured the perfor-
mance of the event detection in terms of three parameters. 
First, we computed the number of True Positive events, i.e., 
the number of events that were actually been due by the 
driver and detected by the system. Then, we considered 
the False Positive events as the number of events that were 
detected by the system but that were not actually due to the 
driver. Finally, the True Negative events are those events 
that were due to the driver but were not detected by the 
system. Regarding the methodology of these experiments, 
a single driver has set up a Samsung Galaxy Gio (GT-S5660) 
smartphone in a car holder. The detected events were noti-
fied by SenseFleet with both a text and audio notification. 
The driver used a second mobile device also placed in a 
car-holder to tally the true positive, false positive and true 
negative events. The results of this experiment are shown in  
Fig. 4. We observe that for more than 1500 calibration 
samples, a true positive rate (i.e., events that are correctly 
detected) greater than 90% was obtained, requiring a cali-
bration time of at least 17 minutes and a driven distance of 
9.21 km. Note that the calibration process was automatically 
paused and resumed if the trips were not long enough to fin-
ish the calibration in a single run.

B. Scoring Comparison
1) Testbed Setup: In this Section, we evaluate the perfor-
mance of SenseFleet in a real environment. To do this, we 
collected traces from 10 different drivers using the same 
car (Renault Twizy) over a predefined path1. This 9.8 km-
long path encompassed different types of roads having dif-
ferent speed limits in the city of Luxembourg, allowing the 
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driver to perform different maneuvers. All the experiments 
were performed during daytime and with variable weather 
conditions (dry, rainy and foggy). A single experiment con-
sisted of a calibration phase ( )n 1500=  and two laps along 
the predefined path. During the calibration phase, the 
driver collected input variable samples to set up the fuzzy 
system. We fixed n 1500=  as a good compromise between 
detection accuracy and calibration phase delay. Once the 
system was calibrated, a notification told the driver to come 
back to the point of departure. The driver was then asked 
to drive two laps. In the first lap, the driver was asked to 
drive calm, by observing speed limits and avoiding abrupt 
maneuvers. During the second lap the driver was asked to 
drive more aggressively. The scoring algorithm reduced 
the driver score for each detected event: depending on 
the severity level of the event (i.e., low, medium, high and 
extreme) the score was reduced 2, 4, 6 or 8 points respec-
tively. Additionally, the score was increased by one point 
when no event is detected during 0.5 km of driving.

2) General Results: Table 2 presents the general results 
of the experiment, including the number of events and score 
for both the calm (C ) and aggressive ( A) laps. The different 
drivers are labeled from D1 to D10 and ordered by decreas-
ing score obtained during the calm lap. We observe in the 
results that in all the cases, the number of detected events 
and the scores obtained are consistent with the type of lap 
(calm or aggressive). Moreover, since the scoring algorithm 
considers not only the number of events but the current 
weather information, we can observe in Table 2 that driv-
ers having different number of events may obtain the same 
score. This is the case for drivers 6 and 7, who both obtained 

69 points during the calm lap but with differ-
ent weather conditions for the experiments 
(i.e., driver 6 with normal and driver 7 with 
rainy weather).

3) Location of Events: In order to obtain 
a global view of the detected events, we 
computed the event location distribution 
for the different laps (calm and aggressive) 
and the different types of events for all the 
drivers. Fig. 5 shows these distributions in 
a set of heatmaps. In particular, Figs. 5a 
and 5d show the location of events for the 
aggressive and calm laps respectively. We 
can observe in these figures that for calm 
drivers, event hotspots are located at very 
precise areas on the path, that can be con-
sidered as dangerous due to specific road 
topology (e.g., a sudden stop point after a 
pronounced slope; first maneuver on leav-
ing from the parking garage). On the other 
hand, the event location distribution for the 
aggressive laps shows a more uniform dis-
tribution of events along the path with sev-

eral hotspots at intersections (where the driver tends to 
brake, steer and accelerate aggressively). Figs. 5b, 5c, 5e 
and 5f show the location distribution of the different types 
of events (considering only the aggressive laps). In these 
figures we can observe that steering events are mainly 
detected at intersections, indicating a minimum of false 
positive events. In contrast, over-speed events are mostly 
located in low speed-limit streets and are less frequent in 
main avenues, where the speed limit is 70 km/h.

4) Comparison to Driver’s Subjective Score: In order to 
study the significance of the scores obtained using Sense-
Fleet, we asked the drivers to provide a subjective score 
for their laps. To the best of our knowledge, this is the first 
evaluation study that has considered the relation with sub-
jective driver scores. In particular, the drivers were asked to 
score both their calm and aggressive laps using a scale of 1 
to 5, with 1 being the highest risk class and 5 the lowest risk 
(safest) class.

For evaluation purposes, we compare the platform 
output with the drivers’ subjective scores. To do this, we 
categorized the results obtained with SenseFleet into five 
classes. We considered five features: (ACC, BRK, STE, 
OVS, Score), representing the number of events of each 
type and the score value. We then clustered them using 
the k-means algorithm.

Fig. 6 illustrates the five clusters that were computed. 
Each point in the space represents a particular calm or 
aggressive lap (the number indicates the driver and letters 
a  and c  indicates aggressive or calm lap respectively). The 
5-dimensional space was reduced to a 2-dimensional space 
by performing Principal Component Analysis (PCA).

D
ACC BRK STE OVS Total Score

C A C A C A C A C A C A

01 1 11 0 12 3 6 1 12 5 41 100 35

02 2 16 0 12 4 10 1 9 7 47 87 0

03 4 9 1 4 5 3 6 9 16 25 83 18

04 4 7 3 5 0 7 1 6 8 25 77 60

05 5 16 3 6 7 9 1 7 16 38 69 31

06 2 17 0 15 12 14 3 15 17 61 69 0

07 4 8 1 8 3 5 1 16 9 37 69 0

08 9 9 2 8 8 12 5 10 24 39 68 26

09 4 13 1 10 6 6 2 9 13 38 64 0

10 5 15 4 5 6 9 6 9 21 38 58 33

Avg 16 38.9 4 12.1 1.5 8.5 5.4 8.1 2.7 10.2 74.4 20.3

Table 2. General results.
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Table 3 indicates the two first principal components load-
ings. The first principal component (PC1 ) is a linear combi-
nation of the number of events of different types (with loadings 
in the range -0.481 to -0.322) and the score with a loading of 
0.481. High values of the first principal component represent 
a low number of events and a high score, while low values 
are related to a high number of events and a lower score (e.g., 

: ( ) , . : ( )PC n events PC n events2 12 1 8 351 1$ # # $- ).
The second principal component (PC2 ) is predominantly 

influenced by the number of steering events (with a weight 
of 0.915), less importantly by over-speed and braking events 
with negative loadings. High values for the second principal 
component are related to laps with a high number of steer-

ing events. Low values of this component represent moder-
ate driving ( ( . , . )PC 0 6 0 62 ! - ) or laps with a high number 
of over-speed events (PC 12 #- ).

The aggressive and calm laps are clearly separable into 
two larger over-clusters (depicted in light blue in Fig. 6), 
with the single exception of the third driver’s aggressive lap 
(lap 03a). This particular aggressive lap has been clustered 
as a calm lap due to a lower number of events and better 
weather conditions than in the rest of the aggressive laps.

The distance between the calm and the aggressive clus-
ters shows that SenseFleet allows a clear distinction to be 
made between both driver behaviors. In terms of the driver 
score, we can observe a linear separation between calm and 
aggressive laps at a score value of 47.75, which is close to 
half the scoring range.

Table 4 indicates the centers and sizes of the clusters, 
ordered by increasing score (i.e., a lower cluster index cor-
responds to a more aggressive driving behavior). We can 
observe that the score values are well distributed over the 
scoring range. The clusters are similarly sized, except for 
cluster 3, which only contains two laps that are very close to 
the edge of the calm cluster.

In Table 5, we show a comparison between the driv-
ers’ subjective scores and the computed cluster for each 

(a) (b) (c)

(d) (e) (f)

Fig 5 Event locations for the different drivers. (a) Event locations for the aggressive laps. (b) Acceleration event locations. (c) Braking event locations.  
(d) Event locations for the calm laps. (e) Steering event locations. (f) Overspeed event locations.
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Prin. Comp. ACC BRK STE OVS Score

PC1 -0.469 -0.481 -0.322 -0.462 0.481

PC2 0.0 -0.130 0.915 -0.293 0.241

Table 3. PCA loadings of the first 2 components.
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individual lap. Recall that each driver provided two subjec-
tive scores (one for their calm and another for the aggressive 
lap). For 60% of the laps, the subjective and computed clus-
ter values are identical. This was mainly observed for the 
least aggressive drivers. In our experiment, there were only 
two laps that received a high risk subjective score (risk fac-
tor 1), whereas our clustering indicated four such laps. If a 
match between subjective and SenseFleet scores is assumed 
for a distance of 1!  between the categories, we achieve 90% 
matching (18 over 20 laps have equivalent subjective and 
SenseFleet score), which denotes a good confidence level.

C. Effect of Different Smartphones
As has been previously mentioned, different devices embed 
different sensors and chipset brands, providing different 
sampling rates, ranges and resolutions for motion sensors. 
In order to validate the event detection accuracy of Sense-
Fleet on different platforms, we performed another experi-
ment. In this experiment, we installed two different smart-
phones simultaneously in a single car: a Samsung Galaxy 
Gio (S5660) and a Samsung Galaxy S3 (I9300) using two 
different car-holders. Note that these two devices have very 
different performance and capacities in terms of sensors 
sampling rate and resolution. The I9300 smartphone has a 
ST Microelectronics LSM330DLC [24] while the S5660 has 
a Bosch BMA220 [25] 3-axis accelerometer. The experi-
ment consisted of a calibration process (to define the fuzzy 
sets) and a complete lap over the circuit used in the first 
experiment. Fig. 7 shows the results of this experiment 
in terms of event detection performance. We observe that 
event detection follows almost the same pattern regardless 
of the device.

VI. Discussion
SenseFleet enables event detection over different vehicles 
and mobile devices. This is provided by the collection of 
motion sensor traces and statistical analysis during a cali-
bration phase. However, the way the calibration phase is 
performed conditions the event detection phase and conse-
quently driver scoring. In other words, a non-representative 
calibration phase (e.g., the driver does not drive in the usual 
way), can prevent the event detector from triggering events 
(if the calibration phase took place during a very aggressive 
driving pattern) or, in contrast, it can overestimate the num-
ber of detected events (when the calibration phase was done 
in a very calm pattern).

To give an example, in Fig. 8 we illustrate the cumulative 
distribution of ( )jv  during the calibration phase and the 
aggressive lap for two drivers (DA  and DB). We can observe 
that for ,DA  both distributions are much closer than in the 
case of .DB  To provide a comparison metric, we computed 
a Kolmogorov-Smirnov test between the two distributions 
(calibration and aggressive lap) obtained for DA  and .DB  
The resulting statistic D  for DA  and DB  were 0.13 and 0.46 

Cluster Size ACC BRK STE OVS Score

1 4 13.5 11.25 8.75 12.25 0

2 5 12 7 7.8 9.4 28.6

3 2 6 4.5 6.5 6 59

4 5 4.8 1.4 7.2 2.4 67.8

5 4 2.25 1 4 2.5 88.75

Table 4. Cluster sizes and centers.

D
Calm Aggr.

Subj. Clust. Subj. Clust.

01 4 5 1 2

02 5 5 3 1

03 5 5 3 3

04 5 5 2 2

05 4 4 2 2

06 3 4 2 1

07 5 4 3 1

08 3 4 2 2

09 4 4 1 1

10 3 3 2 2

Table 5. Subjective scores vs. clustering.
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respectively, indicating that DA  had much more similar val-
ues of ( )jv  during the calibration phase and the aggressive 
lap than .DB

In order to mitigate this effect, several solutions may be 
applied. First, instead of considering a fixed number of cal-
ibration samples, the system may dynamically decide when 
to stop the calibration phase given a certain condition. As 
an example, the system may observe GPS metrics during 
the calibration phase (like speed and bearing variation) to 
decide whether the calibration samples are representative 
or not. A second solution would be to consider a continuous 
calibration, i.e., instead of performing an initial phase, the 
system may periodically analyze the distribution of sens-
ing input variables and adapt the event detection fuzzy sys-
tem. To do this, Q-Digest [26] would be used to compute 
a fast quantile approximation. Finally, a potential solution 
could also be to consider global parameters from the event 
detection phase that are not individually obtained by any 
single car but by a remote system that can consider a much 
larger set of sensing data from different phones, vehicles 
and drivers and perform statistical analysis to compute 
sets of parameters for the event detection algorithm that 
will be then remotely enforced in every single device.

VII. Conclusion and Perspectives
In this paper, we have described SenseFleet, a new mobile 
device and vehicle independent driver profiling and scoring 
application. SenseFleet is able to detect acceleration, brak-
ing, steering and over-speeding events by fusing motion 
sensors and GPS data. In order to perform event detection for 
multiple devices and vehicles, we used a calibration phase 
that allows adapting the fuzzy set limits for the event detec-
tion algorithm. In particular for over-speeding events, we 
use a web service to obtain the speed limits for the different 

roads along the path. Moreover, in contrast to existing solu-
tions, we propose a scoring algorithm that not only relies on 
the number of events but also considers context information 
such as the current weather conditions and the time of day. 
In order to validate our platform, we used the application 
under different conditions (i.e., different drivers, devices, 
cars) and we performed a controlled evaluation study using 
a single car and path and different drivers driving in both 
calm and aggressive patterns. The experimental results 
show that SenseFleet is able to accurately detect risky driv-
ing events and distinguish between aggressive and calm 
drivers. The scoring results were compared to a subjec-
tive risk metric provided by each individual driver for their 
experiments. The results show that SenseFleet scores are 
equivalent to individual drivers’ feedback in around 90% of 
the cases within 1!  neighboring driver clusters. For future 
work, we intend to analyze the impact of calibration on the 
event detection. As stated in Section VI, some potential solu-
tions for obtaining representative calibration samples have 
been investigated and need to be studied in a larger experi-
mental testbed. Moreover, we aim intend to evaluate dif-
ferent approaches for the fuzzy sets definition, considering 
other types of membership functions and statistical analysis 
over calibration data.
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