

Differential Privacy of Populations in Routing Games

Roy Dong

Joint work with Walid Krichene, Alexandre Bayen, and S. Shankar Sastry

Privacy in Human Cyber-Physical Systems

Ubiquity of sensing and actuation modalities.

Privacy in Human Cyber-Physical Systems

Ubiquity of sensing and actuation modalities.

Privacy

* What conception of privacy are we using?

Privacy

- * What type of disclosure are we concerned with?
 - * Identity disclosure.
 - * Attribute/inferential disclosure.

- * The "gold standard" for database privacy.
 - * Pros:
 - * Models arbitrary side information.
 - * Has "composition" theorems.
 - * Cons:
 - * Needs an aggregate of a large population.
 - * Often needs a noise source of a particular form.

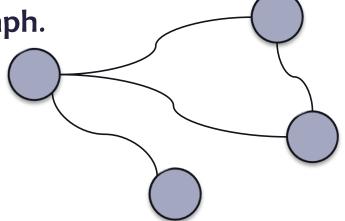
Outline

- * Introduction to the Routing Game
- * Definitions of Differential Privacy for the Routing Game
- * Theoretical Results

The Routing Game

* Represent the traffic network as a graph.

Drivers are non-atomic.



* Agents have fixed origins and destinations, and decide which path to take.

* The cost of an edge depends on the total flow on that edge.

Definition of the Routing Game

Definition: The routing game is given by:

A directed graph G = (V, E).

For each edge $e \in E$, edge cost functions $c_e : \mathbb{R}_+ \to \mathbb{R}_+$.

 These functions are assumed to be non-decreasing and Lipschitz continuous.

A finite set of origin-destination pairs $(o_i, d_i) \in V \times V$, indexed $i \in \{1, 2, ..., I\}$.

A finite set of populations P_k , indexed $k \in \{1, 2, ..., K\}$.

• A population is defined by a vector $\theta_k \in \mathbb{R}^I_+$.

Actions in the Routing Game

- * For each origin-destination pair (o_i, d_i) :
 - * Let \mathcal{P}_i denote the set of paths that connect o_i to d_i .
 - * Then, let:

$$\Delta^{\mathcal{P}_i} = \left\{ m \in \mathbb{R}_+^{|\mathcal{P}_i|} : \sum_{p \in \mathcal{P}_i} m_p = 1 \right\}$$

Actions in the Routing Game

- * Populations decide how to allocate mass for each origindestination pair.
 - * For each origin-destination pair (o_i, d_i) , the population k chooses how to allocate $(\theta_k)_i$ of flow among the paths connecting o_i to d_i .
 - * Actions: $x_k \in \Delta^{\mathcal{P}_1} \times \Delta^{\mathcal{P}_2} \times \cdots \times \Delta^{\mathcal{P}_I}$.
- * So: $(x_k)_i \in \Delta^{\mathcal{P}_i}$, and population k allocates a flow of $(\theta_k)_i ((x_k)_i)_p$ to $p \in \mathcal{P}_i$.

Losses in the Routing Game

- * Suppose each population picks its action.
- * Then, the flow on edge *e* is:

$$\phi_e(x_1, ..., x_K) = \sum_{k=1}^K \sum_{i=1}^I \sum_{\{p \in \mathcal{P}_i : e \in p\}} (\theta_k)_i ((x_k)_i)_p$$

* The loss on path p is:

$$\ell_p(x_1, \dots, x_K) = \sum_{e \in p} c_e(\phi_e(x_1, \dots, x_K))$$

* Let $\ell(x_1, ..., x_K)$ denote the vector of all path losses.

Losses in the Routing Game

* Finally, the cost for each population k is:

$$\sum_{i=1}^{I} \sum_{p \in \mathcal{P}_i} (\theta_k)_i ((x_k)_i)_p \ell_p(x_1, \dots, x_K)$$

* More succinctly:

$$\langle x_k, \ell(x_1, ..., x_K) \rangle_{\theta_k}$$

Observation Model

* At each time t, populations observe a noisy version of the loss vector $\hat{\ell}^{(t)}$.

Assumption:

$$\hat{\ell}^{(t)} = \ell\left(x_1^{(t)}, x_2^{(t)}, \dots, x_K^{(t)}\right) + v_t$$

The v_t are independent across time and identically distributed according to a $N(0, \sigma^2)$ distribution.

Dynamics of the Routing Game

- * How do drivers decide which path to take?
 - * Based on their new observation and previous decision.

Routing Game Dynamics:

$$x_k^{(t+1)} = \underset{x_k \in \Delta^{\mathcal{P}_1} \times \Delta^{\mathcal{P}_2} \times \dots \times \Delta^{\mathcal{P}_I}}{\operatorname{argmin}} \langle x_k, \hat{\ell}^{(t)} \rangle_{\theta_k} + \frac{1}{\eta_k^{(t)}} D_{\psi_k} \left(x_k, x_k^{(t)} \right)$$

* Here, D_{ψ} is the Bregman divergence of ψ :

$$D_{\psi}(x,y) = \psi(x) - \psi(y) - \langle \nabla \psi(y), x - y \rangle$$

Dynamics of the Routing Game

$$x_k^{(t+1)} = \underset{x_k \in \Delta^{\mathcal{P}_1} \times \Delta^{\mathcal{P}_2} \times \dots \times \Delta^{\mathcal{P}_I}}{\operatorname{argmin}} \langle x_k, \hat{\ell}^{(t)} \rangle_{\theta_k} + \frac{1}{\eta_k^{(t)}} D_{\psi_k} \left(x_k, x_k^{(t)} \right)$$

 $\langle x_k, \hat{\ell}^{(t)} \rangle_{\theta_k}$: Minimize losses with respect to the most recent observed loss.

 $D_{\psi_k}\left(x_k, x_k^{(t)}\right)$: Penalize large changes.

 $\eta_k^{(t)}$: Learning rate for population k.

The Routing Game

* In our privacy framework:

 θ : The origins and destinations.

$$u = \psi_e(x_1^{(t)}, x_2^{(t)}, ..., x_K^{(t)})$$
: The flow on each edge.

$$y = \hat{\ell}^{(t)}$$
: The observed congestion.

$$\theta \sim p_{\theta}$$

$$u \mid \theta \sim p_{u \mid \theta}$$

$$y \mid u, \theta \sim p_{y \mid u}$$

* Let
$$Y(\theta): \theta \mapsto (\hat{\ell}^{(1)}, \hat{\ell}^{(2)}, \dots, \hat{\ell}^{(T)}).$$

Definition:

Two population vectors θ and θ' are adjacent if there exists some k such that:

$$\|\theta_k - \theta_k'\|_{\infty} \le c$$

$$\theta_{k'} = \theta'_{k'}$$
 for all $k' \neq k$

Definition:

The routing game is (ϵ, δ) differentially private if, for any adjacent θ and θ' if for any measurable set B:

$$P(Y(\theta) \in B) \le \exp(\epsilon) P(Y(\theta') \in B) + \delta$$

Theorem (Differential privacy of the routing game)

After T iterations, the mapping $\theta \mapsto (\hat{\ell}^{(1)}, \hat{\ell}^{(2)}, ..., \hat{\ell}^{(T)})$ is (ϵ, δ) differentially private, where:

$$\epsilon = \sum_{t=1}^{T} \epsilon_t$$

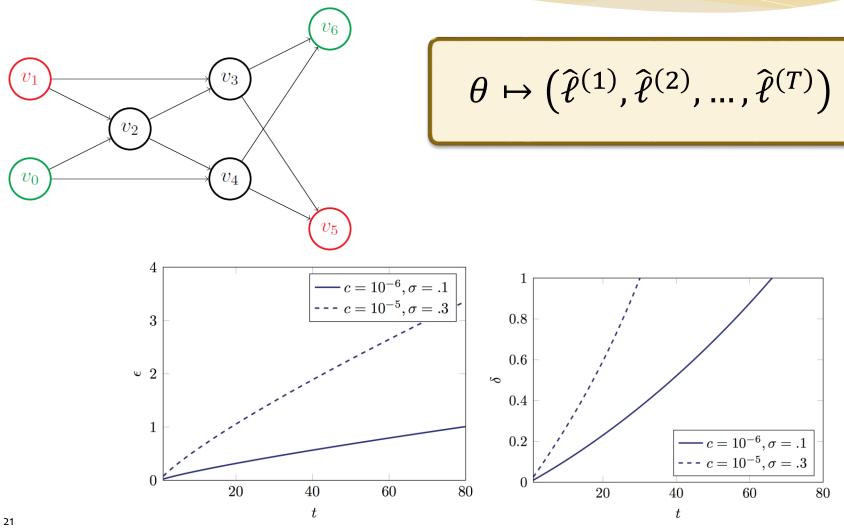
$$\delta = \sum_{t=1}^{T} \exp\left(\sum_{t'=t+1}^{T} \epsilon_{t'}\right) \delta_t + \delta'$$

The constants ϵ_t , δ_t , and δ' are such that, for some a:

$$1 - \delta' = \left(1 - 2\exp\left(-\frac{a^2}{2\sigma^2}\right)\right)^{T\sum_{i=1}^{I}|\mathcal{P}_i|}$$

$$\epsilon_{t} > \frac{cA_{\ell}A_{x}\left(2\ln\left(\frac{1.25}{\delta_{t}}\right)\right)^{\frac{1}{2}}}{\sigma^{2}} \times \left[A_{\Delta} + \frac{A_{\theta}\max_{k}\left(\eta_{k}^{(t)}\right)\left(\sum_{i=1}^{I}|\mathcal{P}_{i}|\right)^{\frac{1}{2}}(M+a)}{\min_{k}\ell_{\psi_{k}}}\right]$$

Routing Game Example



Page 21

71

Thanks!

