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Figure: Example network

o Directed graph (V, E)
o Population k: paths Px
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Routing game

Figure: Example network

Directed graph (V, E)
Population k: paths Pk
Population distribution over paths xp, € A”%

Loss on path p: £,(x)
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Routing game

“‘

X" = (xp,,...,xp,) is an equilibrium if Vk,

<£7’k(X*)aX;;k> < (Z'Pk(X*)aXPk)

Losses are minimal on the support of x3,
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The routing game

@ Well understood

@ Useful for characterizing ‘steady-state’ behavior
o Network performance (price of anarchy)
e System optimal tolling
o Other applications
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The routing game

@ Well understood

@ Useful for characterizing ‘steady-state’ behavior
o Network performance (price of anarchy)
e System optimal tolling
o Other applications

Why study dynamics?
@ How do players arrive at equilibrium?
o How fast?
o Stability?

@ Robustness (noisy measurements)?
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Applications
Transportation networks | Packet routing | Load balancing
Time scale Day minute/second | minute/second
Measurements Route delays Route delays Job completion

Decision model

Distributed

n ) FOUNDATIONS O
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Distributed
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Convergence rate

How fast does the system reconverge to equilibrium?

o Catastrophic failure: Mississippi river bridge collapse (2005)
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Convergence rate

ow fast does the system reconverge to

o Catastrophic failure: Mississippi river bridge collapse (2005)

SE Washington Ave
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Convergence rate

How fast does the system reconverge to equilibrium?

@ Incident response: closure of 115 after fire on bridge during construction.
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Convergence rate

How fast does the system reconverge to equilibrium?
e Adding a link to the network: construction of the Millau Viaduct (2004)
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Convergence rate

How fast does the system reconverge to equilibrium?
e Adding a link to the network: construction of the Millau Viaduct (2004)
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Convergence rate

How fast does the system reconverge to equilibrium?

@ Tolling: Electronic Road Pricing (ERP) in Singapore.

—— —
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Existing results

Continuous time:

@ General case of potential games, under a positive correlation condition [9]
@ Special case of routing games, under replicator dynamics [5]

Discrete time:

o General class of no-regret dynamics, limited convergence result [2]

[9] William H Sandholm. Potential games with continuous player sets.
Journal of Economic Theory, 97(1):81-108, 2001

[5] Simon Fischer and Berthold V3cking. On the evolution of selfish routing.
In Algorithms—ESA 2004, pages 323-334. Springer, 2004

[2] Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: on convergence
to nash equilibria of regret-minimizing algorithms in routing games.
In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing,
PODC '06, pages 45-52, New York, NY, USA, 2006. ACM
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Routing game

Figure: Example network

Directed graph (V, E)
Population k: paths Pk
Population distribution over paths xp, € A”%

Loss on path p: £,(x)
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Online learning model

At iteration t

o Players of population k choose routes. Distribution x®,
o Ip,(x') is revealed to players of population k.
o Players update their distribution.

xg:rl) = ug (x7(,t2 , history)
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Online learning model

At iteration t

o Players of population k choose routes. Distribution x®,
o Ip,(x') is revealed to players of population k.
o Players update their distribution.

xg:rl) = ug (X7(,? , history)

Define a class C of algorithms (update rules) such that

u €ECVYk=x 5 N

Extension: Losses are noisy /p, (x(*)) with

Ellp, (<) x"] = £p, (x)
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Convex potential

T —————

f(x) Convex
Vsp, FX) = b, (x)
N =argmin xpy ... aPx F(X)

Optimality conditions:

(U(x"),x =x") >0 Vx & Yk, Vxp,, {lp (xp,),xp, —xp,) >0

@ Continuous time: f used as a Lyapunov function.

@ Discrete time: regret.
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e —

Instantaneous regret:

P (x) = <€(x(t)),x(t) _ x>

x5 N & limsupsup r?(x) <0
t X
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Regret

I Average cumulative regret \-| Q
e

RO = 1 57/ (x)

T<t

0 = %ZX(T) N <& Iimtsupstl(p RY(x) <0

T<t

By convexity of f,

f %ZX(T)> —f(x) < %Z f(x("')) —f(x) < %Z <£(x(t)),x(t) _ x> — R(t)(X)

T<t T<t T<t
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Regret

@ Regret first defined by Hannan (1957) in the context of repeated games [6]

Large classes of algorithms have “no regret” guarantees, e.g. [3]

However, only guarantees convergence of x\), not x(¥)

@ Seek additional conditions to guarantee x® 5 N
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Regret

@ Regret first defined by Hannan (1957) in the context of repeated games [6]

Large classes of algorithms have “no regret” guarantees, e.g. [3]

However, only guarantees convergence of >"<(t), not x(9)

e Seek additional conditions to guarantee x() — A/

Observation
If £(x(*)) is eventually monotone, then f(x() — £*. }

[6] James Hannan. Approximation to Bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97-139, 1957

[3] Nicold Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006
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Replicator dynamics

dxk
vp € P, =2 = x5 ((tp (), xm,) — ()

Also in evolutionary game theory, Weibull [10].

19/37




Introduction Convergence Simulations References
000000 00000000 0e0000000000 000000

Replicator dynamics

Replicator equation

Xk
¥p € P 2 = xf ({09, (), 5, — £5()) (1)

Also in evolutionary game theory, Weibull [10].

Every solution of the ODE (1) converges to the set of its stationary points.

Proof: f is a Lyapunov function.

[10] Jorgen W Weibull. Evolutionary game theory.
MIT press, 1997

[5] Simon Fischer and Berthold Vécking. On the evolution of selfish routing.
In Algorithms—ESA 2004, pages 323-334. Springer, 2004



Approximate REPlicator update

T

x}(,H'l) — x,(,t) = mx,gt) <<Zk(x(t)), xgz> - Zk(x(t))) +ne UF(,tH)

(UY),~; perturbations that satisfy for all T > 0,

T2

lim max Z 'r]tU(t“) =0

l
T1—>00 TziztiTl ne<T p

Michel Benaim. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999 20/37
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Convergence to Nash equilibria

Under AREP updates, if n: | 0 and Y 7 = oo, then

05N

o Affine interpolation of x® is an asymptotic pseudo trajectory.

@y, (27%)
()

.
Dy, ()

e f is a Lyapunov function for Nash equilibria in the continuous system.

. FORC I:§
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Convergence to Nash equilibria

Under AREP updates, if n: | 0 and Y 7 = oo, then

x5 N

o Affine interpolation of x(*) is an asymptotic pseudo trajectory.

Dy, ()

o f is a Lyapunov function for Nash equilibria in the continuous system.
However, No convergence rates.

[7] Walid Krichene, Benjamin Drighés, and Alexandre Bayen. On the convergence of no-regret
learning in selfish routing.

In Proceedings of the 31st InternationaIGMfF @ hine Learning (ICML-14), pages
163-171. JMLR Workshop and Conference ?; ugém; 14

NS OOTLSITENT
SICAL SYSTEMS



@ Introduction A
@ Routing Game

@ Motivation
o Existing results

© Convergence
@ Model
o Convergence of averages
@ Convergence using Stochastic Approximation
@ Convergence using Stochastic Mirror Descent (SMD)

© Simulations

22/37

G FORCES

GYBER-PHYSICAL SYSTEMS.



subjectto xe€ X C R?  convex, compact set
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Stochastic Mirror Descent

f(m!

minimize
subjectto xe X C R?  convex, compact set
At iteration t
o have a stochastic subgradient (¥

o 2 unbiased: E [g(t)|}}] =g® € f(xV) (F; natural filtration of (x(*))
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Stochastic Mirror Descent

minimize f(x) convex function
subjectto xe X C RY  convex, compact set

At iteration t

@ have a stochastic subgradient g“)

o &9 unbiased: E [g-“)\ft] = g® € af (x®)) (F, natural filtration of (x(*)))

Algorithm 3 SMD Method with learning rates ()
1: for t € N do
2 gM € Fo
3: X = arg min <§(t),x> + tit(x,x(t))
4

xeEX
. end for

S

FORCES



Mirror Descent

— i)
“o - f@) 4 (W e -2
o f @) 4 (6w 2 4 LDy (2

Figure: Mirror Descent iteration
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Bregman Divergence

Strongly convex function v

Dy (x,y) = ¥(x) = d(y) = (Vib(y), x — y)

q"« \J
W Q“ 5’,
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Bregman Divergence

Strongly convex function v

Dy (x,y) = ¥(x) = d(y) = (Vib(y), x — y)

o ¥(x) = HlIxI, Du(x.y) = 3llx — ylB (projected gradient)

\y)‘\ Vr
e
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Bregman Divergence

Strongly convex function v

Dy (x,y) = ¥(x) = d(y) = (Vib(y), x — y)

o ¥(x) = 3IxI13, Dy(x,y) = 3llx — y|3 (projected gradient)
o P(x) = —H(x) = XL, xiInxi, Dy(x,y) = Dre(x,y) = o0, % In %

QLN

e
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Convergence rates

f nt Convergence
Weakly convex \% % 25:1 E [f(x('r))} —f* = O(\%) [8]
. I
1« a €(0,1) E[f(x")] —f*=0 (tm(oigffﬁ

Strongly convex | n: =0, Y.t =00 | E [Dlﬂ,(x*,x(t))} -0 (7}7. +e XF n,—)
éf%, a€(0,1) E [Dy (x*,x(0)] = O(t~)

Figure: Convergence rates of SMD. S. Krichene, W. Krichene, R. Dong, A. Bayen. In
preparation.

[8] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983.

ISBN 9780471103455
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Regret bound for SMD

w‘

Main ingredient:

Assume D, bounded by D and E ||g]|*> < G.
SMD method with (n:). Vto > t; > 0 and Fy, -measurable x,

tZZ]E[<g(T),X(T)—X>] SM+D<L_i>+ 6 S, @)

Mty N 7 2Ly T=t

T=t1
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Distributed SMD with heterogeneous agents

] X:X1><~~~><XK
o Agent k updates x* € X
e Dy« and 1k depends on k

Algorithm 4 DSMD Method with learning rates (1¥) and divergences Dy
1. for t € Ndo
2: g e Fn
3:

. P 1
xp, ) = arg MmN, €X; <g7(>tk),x7>k - ka(t)> * UTDUk(ka,ka(t))
t

4: end for

S
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Routing game with heterogeneous populations

Figure: Example network

Under unbiased noisy losses, with heterogeneous update rules with nf = @t~

E [f(x<f>)] _f =0 (t— i (ing s L—ma ak))

where f is the Rosenthal potential function

29/37
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Simulations

Figure: Example network

@ Centered Gaussian noise on edges.

o Population 1: Hedge with ! = +7%1

e Population 2: Hedge with n? = %t—o.s

30/37
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One realization

1 T T T T T T T T

— path po = (vo, vs, v1) 2 — path po = (vo, v, v1)
0.8 - - - path p; = (vo,v4,v5,v1) | | N, _/_H‘,\\,,J«*,\:‘,\\”fpathm:(1'0,1,'4.1'5,170
AR S pdthpz—(to v1) - | ! - == path py = (vo, v1)
_osp 1
£ 0
<
0.4 1
Ny EI\/\/\"W\”_\"‘/W/\,
0 - T L L L L ) i L
0 10 20 30 40 50 60 70 80 90 100
T T
1 — —r—— 9 ——————
—— path po = (vo, vs,v1) —— path py = (vo,vs,v1)
0.8 path p; = (v 1 path p1 = (vo, va, v5,v1)
path py = (vo, path py = (v, v1)
o 06f
©
:&A
T 04
Ko
0.2
0 | | | | | | | | .
0 10 20 30 40 50 60 70 80 90

Figure: Population distributions and noisy path losses
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References
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v, 1)

V0, V4, V5, V1)

T T
path po = (vo
- =~ path p;

- -~ path py = (v0,v1)

30 40

T T 2
— path po = (vo, vs,v1)
path py = (vo, va, v5,v1)

path py = (v, v1)

Figure: Population distributions and noisy path losses

path po = (vo,vs, v1)
path py = (vg,v4,v
path ps = (vg,v1)
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One realization

0 10 20 30 40 50 60 70 80 90 100

Figure: Expected distance to equilibrium
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Summary and Extensions

@ How do players arrive at equilibrium?
Any algorithm in the AREP or the DSMD class.

o How fast?

Convergence rates for the DSMD class.
@ Stability?

Nash equilibria are stable for these dynamics [4]
@ Robustness?

Robust to unbiased perturbation, e.g. when losses are not known but
estimated.
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Summary and Extensions

@ How do players arrive at equilibrium?
Any algorithm in the AREP or the DSMD class.

o How fast?
Convergence rates for the DSMD class.

@ Stability?
Nash equilibria are stable for these dynamics [4]
@ Robustness?
Robust to unbiased perturbation, e.g. when losses are not known but
estimated.
Extensions
@ Provides a model of population dynamics for optimal control problems.

@ Adapt to other problems, such as network consensus.

[4] Benjamin Drighes, Walid Krichene, and Alexandre Bayen. Stability of nash equilibria in the
congestion game under replicator dynamics.
In Conference on Decision and Control (CDC), 2014
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Thank you.
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