Simulations

Robust Convergence of Distributed Routing with Heterogeneous Population Dynamics

Walid Krichene

Alex Bayen

Dept. of Electrical Engineering & Computer Sciences, UC Berkeley, CA, USA

Introduction	Convergence	Simulations	References
000000	000000000000000000	000000	
o			

Outline

Introduction

- Routing Game
- Motivation
- Existing results

2 Convergence

- Model
- Convergence of averages
- Convergence using Stochastic Approximation
- Convergence using Stochastic Mirror Descent (SMD)

Simulations

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
o			

Outline

Introduction

- Routing Game
- Motivation
- Existing results

2 Convergence

- Model
- Convergence of averages
- Convergence using Stochastic Approximation
- Convergence using Stochastic Mirror Descent (SMD)

3 Simulations

Introduction •••••••	Convergence 00000000000000000000000000000000000	Simulations 000000	References
Routing game			

Figure: Example network

- Directed graph (V, E)
- Population k: paths \mathcal{P}_k

ullet Population distribution over paths $x_{\mathcal{P}_k}\in\Delta^{\mathcal{P}_k}$

• Loss on path p: $\ell_p(x)$

Introduction •••••••	Convergence 000000000000000000	Simulations 000000	References
Routing game			

Figure: Example network

- Directed graph (V, E)
- Population k: paths \mathcal{P}_k
- Population distribution over paths $x_{\mathcal{P}_k} \in \Delta^{\mathcal{P}_k}$
- Loss on path $p: \ell_p(x)$

Introduction	Convergence	Simulations	References
00000	00000000000000000000000	000000	
Routing game			

Equilibrium

 $x^* = (x^*_{\mathcal{P}_1}, \dots, x^*_{\mathcal{P}_k})$ is an equilibrium if $\forall k$,

$$\left\langle \ell_{\mathcal{P}_k}(x^*), x^*_{\mathcal{P}_k} \right\rangle \leq \left\langle \ell_{\mathcal{P}_k}(x^*), x_{\mathcal{P}_k} \right\rangle$$

Losses are minimal on the support of $x_{\mathcal{P}_k}^*$

Introduction	Convergence	Simulations	References
00000	000000000000000000000000000000000000000	000000	

The routing game

One-shot routing game

- Well understood
- Useful for characterizing 'steady-state' behavior
 - Network performance (price of anarchy)
 - System optimal tolling
 - Other applications

Why study dynamics?

- How do players arrive at equilibrium?
- How fast?
- Stability?
- Robustness (noisy measurements)?

Introduction	Convergence	Simulations	References
00000	000000000000000000000000000000000000000	000000	

The routing game

One-shot routing game

- Well understood
- Useful for characterizing 'steady-state' behavior
 - Network performance (price of anarchy)
 - System optimal tolling
 - Other applications

Why study dynamics?

- How do players arrive at equilibrium?
- How fast?
- Stability?
- Robustness (noisy measurements)?

Introduction	Convergence	Simulations	References
000000	000000000000000000	000000	
Applications			

	Transportation networks	Packet routing	Load balancing
Time scale	Day	minute/second	minute/second
Measurements	Route delays	Route delays	Job completion
Decision model	Distributed	Distributed	Can be centralized

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Convergence rate			

• Catastrophic failure: Mississippi river bridge collapse (2005)

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Convergence rate			

• Catastrophic failure: Mississippi river bridge collapse (2005)

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Convergence rate			

• Catastrophic failure: Mississippi river bridge collapse (2005)

Introduction	
000000	

Convergence

Simulations

References

Convergence rate

How fast does the system reconverge to equilibrium?

• Incident response: closure of I15 after fire on bridge during construction.

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Convergence rate			

• Adding a link to the network: construction of the Millau Viaduct (2004)

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Convergence rate			

• Adding a link to the network: construction of the Millau Viaduct (2004)

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Convergence rate			

• Tolling: Electronic Road Pricing (ERP) in Singapore.

Introduction	Convergence	Simulations	References
00000	000000000000000000000000000000000000000	000000	
Existing results			

Continuous time:

- General case of potential games, under a positive correlation condition [9]
- Special case of routing games, under replicator dynamics [5]

Discrete time:

• General class of no-regret dynamics, limited convergence result [2]

 ^[2] Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: on convergence to nash equilibria of regret-minimizing algorithms in routing games.
 In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing, PODC '06, pages 45–52, New York, NY, USA, 2006. ACM

^[9] William H Sandholm. Potential games with continuous player sets. Journal of Economic Theory, 97(1):81–108, 2001

^[5] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In Algorithms-ESA 2004, pages 323-334. Springer, 2004

duction	Convergence	Simulations	Refe
0000	• 000 00000000000000000	000000	

Outline

Introduction

- Routing Game
- Motivation
- Existing results

2 Convergence

- Model
- Convergence of averages
- Convergence using Stochastic Approximation
- Convergence using Stochastic Mirror Descent (SMD)

3 Simulations

Introduction 000000	Convergence O ● O O O O O O O O O O O O O O O O O O	Simulations 000000	References
Routing game			

Figure: Example network

- Directed graph (V, E)
- Population k: paths \mathcal{P}_k
- Population distribution over paths $x_{\mathcal{P}_k} \in \Delta^{\mathcal{P}_k}$
- Loss on path $p: \ell_p(x)$

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Online learni	ng model		

Online learning model

At iteration t

- Players of population k choose routes. Distribution $x^{(t)}$.
- $\ell_{\mathcal{P}_k}(x^{(t)})$ is revealed to players of population k.
- Players update their distribution.

$$x_{\mathcal{P}_k}^{(t+1)} = u_k(x_{\mathcal{P}_k}^{(t)}, \mathsf{history})$$

Main problem

Define a class \mathcal{C} of algorithms (update rules) such that

$$u_k \in \mathcal{C} \ \forall k \Rightarrow x^{(t)} o \mathcal{N}$$

Extension: Losses are noisy $\hat{\ell}_{\mathcal{P}_k}(x^{(t)})$ with

 $\mathbb{E}[\hat{\ell}_{\mathcal{P}_k}(x^{(t)})|x^{(t)}] = \ell_{\mathcal{P}_k}(x^{(t)})$

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Online learn	ing model		

Online learning model

At iteration t

- Players of population k choose routes. Distribution $x^{(t)}$.
- $\ell_{\mathcal{P}_k}(x^{(t)})$ is revealed to players of population k.
- Players update their distribution.

$$x_{\mathcal{P}_k}^{(t+1)} = u_k(x_{\mathcal{P}_k}^{(t)}, \text{history})$$

Main problem

Define a class ${\mathcal C}$ of algorithms (update rules) such that

$$u_k \in \mathcal{C} \ \forall k \Rightarrow x^{(t)} \to \mathcal{N}$$

Extension: Losses are noisy $\hat{\ell}_{\mathcal{P}_k}(x^{(t)})$ with

$$\mathbb{E}[\hat{\ell}_{\mathcal{P}_k}(x^{(t)})|x^{(t)}] = \ell_{\mathcal{P}_k}(x^{(t)})$$

Introduction	Convergence	Simulations	References
000000	0000000000000000000000	000000	
Convex potential			

Rosenthal potential

f(x) Convex $\nabla_{x_{\mathcal{P}_k}} f(x) = \ell_{\mathcal{P}_k}(x)$ $\mathcal{N} = \arg \min_{x \in \Delta^{\mathcal{P}_1 \times \dots \times \Delta^{\mathcal{P}_K}}} f(x)$

Optimality conditions:

$$\langle \ell(x^*), x - x^* \rangle \geq 0 \quad \forall x \quad \Leftrightarrow \quad \forall k, \ \forall x_{\mathcal{P}_k}, \left\langle \ell_{\mathcal{P}_k}(x^*_{\mathcal{P}_k}), x_{\mathcal{P}_k} - x^*_{\mathcal{P}_k} \right\rangle \geq 0$$

- Continuous time: f used as a Lyapunov function.
- Discrete time: regret.

uction	Convergence	Simulations	References
000	000000000000000000000000000000000000000	000000	

Outline

Introduction

- Routing Game
- Motivation
- Existing results

2 Convergence

Model

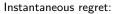
Convergence of averages

- Convergence using Stochastic Approximation
- Convergence using Stochastic Mirror Descent (SMD)

3 Simulations

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
D .			

Regret



$$r^{(t)}(x) = \left\langle \ell(x^{(t)}), x^{(t)} - x \right\rangle$$

Equilibrium

$$x^{(t)} \to \mathcal{N} \Leftrightarrow \limsup_{t} \sup_{x} \sup_{x} r^{(t)}(x) \leq 0$$

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
D .			

Regret

Average cumulative regret

$$\mathcal{R}^{(t)}(x) = \frac{1}{t} \sum_{\tau \leq t} r^{(\tau)}(x)$$

Equilibrium

$$\bar{x}^{(t)} = rac{1}{t} \sum_{\tau \leq t} x^{(\tau)}
ightarrow \mathcal{N} \Leftrightarrow \limsup_{t} \sup_{x} R^{(t)}(x) \leq 0$$

By convexity of f,

$$f\left(\frac{1}{t}\sum_{\tau\leq t}x^{(\tau)}\right)-f(x)\leq \frac{1}{t}\sum_{\tau\leq t}f(x^{(\tau)})-f(x)\leq \frac{1}{t}\sum_{\tau\leq t}\left\langle\ell(x^{(t)}),x^{(t)}-x\right\rangle=R^{(t)}(x)$$

16/37

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Regret			

- Regret first defined by Hannan (1957) in the context of repeated games [6]
- Large classes of algorithms have "no regret" guarantees, e.g. [3]
- However, only guarantees convergence of $\bar{x}^{(t)}$, not $x^{(t)}$
- Seek additional conditions to guarantee $x^{(t)} \rightarrow \mathcal{N}$.

Observation

If $f(x^{(t)})$ is eventually monotone, then $f(x^{(t)}) \rightarrow f^*$.

[6] James Hannan. Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3:97–139, 1957

[3] Nicolò Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Regret			

- Regret first defined by Hannan (1957) in the context of repeated games [6]
- Large classes of algorithms have "no regret" guarantees, e.g. [3]
- However, only guarantees convergence of $\bar{x}^{(t)}$, not $x^{(t)}$
- Seek additional conditions to guarantee $x^{(t)} \rightarrow \mathcal{N}$.

Observation

If $f(x^{(t)})$ is eventually monotone, then $f(x^{(t)}) \to f^*$.

[6] James Hannan. Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3:97–139, 1957

[3] Nicolò Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006

ntroduction	Convergence	Simulations	References
00000	000000000000000000000000000000000000000	000000	

Outline

Introduction

- Routing Game
- Motivation
- Existing results

2 Convergence

- Model
- Convergence of averages

• Convergence using Stochastic Approximation

• Convergence using Stochastic Mirror Descent (SMD)

3 Simulations

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	

Replicator dynamics

Replicator equation

$$\forall p \in \mathcal{P}_k, \frac{dx_p^k}{dt} = x_p^k \left(\langle \ell_{\mathcal{P}_k}(x), x_{\mathcal{P}_k} \rangle - \ell_p^k(x) \right)$$
(1)

Also in evolutionary game theory, Weibull [10].

heorem: Fischer and Vöcking [!

Every solution of the ODE (1) converges to the set of its stationary points.

Proof: *f* is a Lyapunov function.

[10] Jörgen W Weibull. *Evolutionary game theory*. MIT press, 1997

[5] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In *Algorithms–ESA 2004*, pages 323–334. Springer, 2004

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	

Replicator dynamics

Replicator equation

$$\forall p \in \mathcal{P}_k, \frac{dx_p^k}{dt} = x_p^k \left(\langle \ell_{\mathcal{P}_k}(x), x_{\mathcal{P}_k} \rangle - \ell_p^k(x) \right)$$
(1)

Also in evolutionary game theory, Weibull [10].

Theorem: Fischer and Vöcking [5]

Every solution of the ODE (1) converges to the set of its stationary points.

Proof: *f* is a Lyapunov function.

^[5] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In *Algorithms–ESA 2004*, pages 323–334. Springer, 2004

^[10] Jörgen W Weibull. *Evolutionary game theory*. MIT press, 1997

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	

Approximate REPlicator update

Discretization of the continuous-time replicator dynamics

$$x_{\rho}^{(t+1)} - x_{\rho}^{(t)} = \eta_t x_{\rho}^{(t)} \left(\left\langle \ell^k(x^{(t)}), x_{\mathcal{P}_k}^{(t)} \right\rangle - \ell^k(x^{(t)}) \right) + \eta_t U_{\rho}^{(t+1)}$$

 $(U^{(t)})_{t\geq 1}$ perturbations that satisfy for all T > 0,

$$\lim_{\tau_1 \to \infty} \max_{\tau_2: \sum_{t=\tau_1}^{\tau_2} \eta_t < T} \left\| \sum_{t=\tau_1}^{\tau_2} \eta_t U^{(t+1)} \right\| = 0$$

Michel Benaïm. Dynamics of stochastic approximation algorithms. In Séminaire de probabilités XXXIII, pages 1–68. Springer, 1999

Introduction	Convergence	Simulations	References
000000	0000000 0000 00000000	000000	

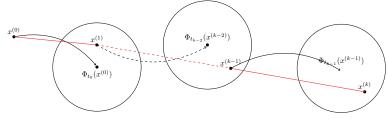
Convergence to Nash equilibria

Theorem Krichene et al. [7]

Under AREP updates, if
$$\eta_t \downarrow 0$$
 and $\sum \eta_t = \infty$, then

$$x^{(t)} \to \mathcal{N}$$

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory.



• *f* is a Lyapunov function for Nash equilibria in the continuous system.

However, No convergence rates.

[7] Walid Krichene, Benjamin Drighès, and Alexandre Bayen. On the convergence of no-regret learning in selfish routing.

In Proceedings of the 31st International Supervised Property in the Learning (ICML-14), pa 163–171. JMLR Workshop and Conference Supervised Protocol Conference of the Supervised Protoc

Introduction	Convergence	Simulations	References
000000	0000000 0000 00000000	000000	

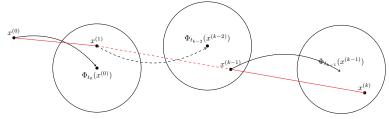
Convergence to Nash equilibria

Theorem Krichene et al. [7]

Under AREP updates, if
$$\eta_t \downarrow 0$$
 and $\sum \eta_t = \infty$, then

$$x^{(t)} \to \mathcal{N}$$

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory.



• f is a Lyapunov function for Nash equilibria in the continuous system. However, No convergence rates.

[7] Walid Krichene, Benjamin Drighès, and Alexandre Bayen. On the convergence of no-regret learning in selfish routing. In *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*, pages 163–171. JMLR Workshop and Conference Proceedings 2014

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
o			

Outline

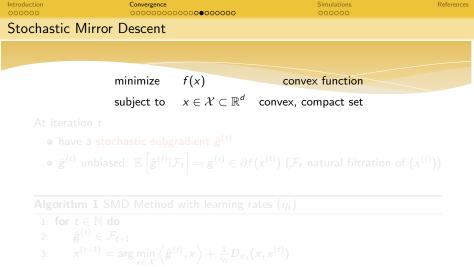
Introduction

- Routing Game
- Motivation
- Existing results

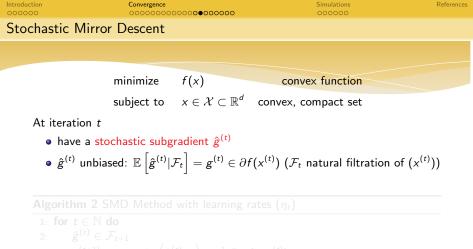
2 Convergence

- Model
- Convergence of averages
- Convergence using Stochastic Approximation
- Convergence using Stochastic Mirror Descent (SMD)

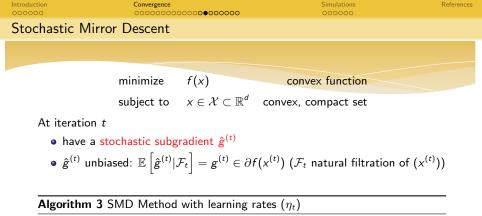
3 Simulations



4: end for



3:
$$x^{(t+1)} = \arg\min_{x \in \mathcal{X}} \left\langle \hat{g}^{(t)}, x \right\rangle + \frac{1}{\eta_t} D_{\psi_t}(x, x^{(t)})$$



1: for
$$t \in \mathbb{N}$$
 do
2: $\hat{g}^{(t)} \in \mathcal{F}_{t+1}$
3: $x^{(t+1)} = \arg\min_{x \in \mathcal{X}} \left\langle \hat{g}^{(t)}, x \right\rangle + \frac{1}{\eta_t} D_{\psi_t}(x, x^{(t)})$

4: end for

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	

Mirror Descent

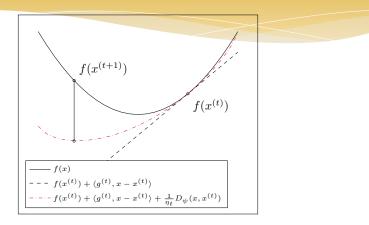


Figure: Mirror Descent iteration

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Program Div	(orgon co		

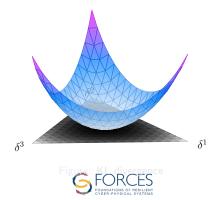
Bregman Divergence

Bregman Divergence

Strongly convex function ψ

$$D_{\psi}(x,y) = \psi(x) - \psi(y) - \langle
abla \psi(y), x - y
angle$$

• $\psi(x) = \frac{1}{2} ||x||_2^2$, $D_{\psi}(x, y) = \frac{1}{2} ||x - y||_2^2$ (projected gradient) • $\psi(x) = -H(x) = \sum_{i=1}^d x_i \ln x_i$, $D_{\psi}(x, y) = D_{KL}(x, y) = \sum_{i=1}^d x_i \ln \frac{x_i}{y_i}$



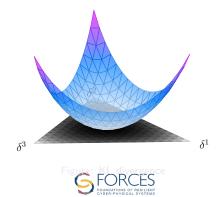
Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Bregman Diverge	nce		

Bregman Divergence

Strongly convex function ψ

$$\mathcal{D}_{\psi}(x,y) = \psi(x) - \psi(y) - \langle
abla \psi(y), x - y
angle$$

- $\psi(x) = \frac{1}{2} ||x||_2^2$, $D_{\psi}(x, y) = \frac{1}{2} ||x y||_2^2$ (projected gradient)
- $\psi(x) = -H(x) = \sum_{i=1}^{d} x_i \ln x_i, \ D_{\psi}(x, y) = D_{KL}(x, y) = \sum_{i=1}^{d} x_i \ln \frac{x_i}{y_i}$



Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	

Bregman Divergence

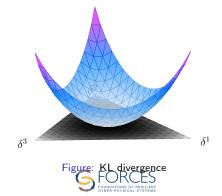
Bregman Divergence

Strongly convex function ψ

$$\mathcal{D}_{\psi}(x,y) = \psi(x) - \psi(y) - \langle
abla \psi(y), x - y
angle$$

•
$$\psi(x) = \frac{1}{2} ||x||_2^2$$
, $D_{\psi}(x, y) = \frac{1}{2} ||x - y||_2^2$ (projected gradient)

•
$$\psi(x) = -H(x) = \sum_{i=1}^{d} x_i \ln x_i, \ D_{\psi}(x, y) = D_{KL}(x, y) = \sum_{i=1}^{d} x_i \ln \frac{x_i}{y_i}$$



Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
6			

Convergence rates

f	η_t	Convergence
Weakly convex	$\frac{c}{\sqrt{t}}$	$\frac{1}{t}\sum_{\tau=1}^{t} \mathbb{E}\left[f(x^{(\tau)})\right] - f^{\star} = O(\frac{1}{\sqrt{t}}) $ [8]
	$rac{c}{t^{lpha}}, lpha \in (0,1)$	$\mathbb{E}\left[f(x^{(t)})\right] - f^{\star} = O\left(\frac{\log t}{t^{\min(\alpha, 1-\alpha)}}\right)$
Strongly convex	$\eta_t ightarrow$ 0, $\sum \eta_t = \infty$	$\mathbb{E}\left[D_{\psi}(x^{\star},x^{(t)})\right] = O\left(\eta_{T} + e^{-\sum_{T}^{t}\eta_{T}}\right)$
	$rac{ heta}{\ell_f t^{lpha}}, lpha \in (0,1)$	$\mathbb{E}\left[D_{\psi}(x^{\star}, x^{(t)})\right] = O(t^{-\alpha})$

Figure: Convergence rates of SMD. S. Krichene, W. Krichene, R. Dong, A. Bayen. In preparation.

Wiley-Interscience series in discrete mathematics. Wiley, 1983. ISBN 9780471103455

^[8] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	

Regret bound for SMD

Main ingredient:

Proposition

Assume D_{ψ} bounded by D and $\mathbb{E} \|\hat{g}\|^2 \leq G$. SMD method with (η_t) . $\forall t_2 > t_1 \geq 0$ and \mathcal{F}_{t_1} -measurable x,

$$\sum_{\tau=t_1}^{t_2} \mathbb{E}\left[\left\langle g^{(\tau)}, x^{(\tau)} - x \right\rangle\right] \le \frac{\mathbb{E}\left[D_{\psi}(x, x^{(t_1)})\right]}{\eta_{t_1}} + D\left(\frac{1}{\eta_{t_2}} - \frac{1}{\eta_{t_1}}\right) + \frac{G}{2\ell_{\psi}} \sum_{\tau=t_1}^{t_2} \eta_{\tau} \quad (2)$$

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
Distributed	SMD with heterogeneous agents	5	
• X =	$=\mathcal{X}_1 imes\cdots imes\mathcal{X}_K$		

- Agent k updates $x^k \in \mathcal{X}_k$
- D_{ψ^k} and η^k_t depends on k

Algorithm 4 DSMD Method with learning rates (η_t^k) and divergences D_{ψ^k}

1: for
$$t \in \mathbb{N}$$
 do
2: $\hat{g}^{(t)} \in \mathcal{F}_{t+1}$
3: $x_{\mathcal{P}_k}^{(t+1)} = \arg \min_{x_{\mathcal{P}_k} \in \mathcal{X}_k} \left\langle \hat{g}_{\mathcal{P}_k}^{(t)}, x_{\mathcal{P}_k} - x_{\mathcal{P}_k}^{(t)} \right\rangle + \frac{1}{n_k^k} D_{\psi^k}(x_{\mathcal{P}_k}, x_{\mathcal{P}_k}^{(t)})$

4: end for

Introduction	Convergence	Simulations	References
000000	0000000000000000000	000000	
Routing game w	ith heterogeneous populati	ons	

2 6 3

4

Figure: Example network

Routing game with heterogeneous populations

Under unbiased noisy losses, with heterogeneous update rules with $\eta_t^k = \theta_k t^{-\alpha_k}$

$$\mathbb{E}\left[f(x^{(t)})\right] - f^{\star} = O\left(t^{-\min(\min_k \alpha_k, 1 - \max_k \alpha_k)}\right)$$

where f is the Rosenthal potential function

Introduction	Convergence	Simulations	References
000000	000000000000000000	00000	
Simulations			
	5		
	4 6		
	2	-3	

Figure: Example network

- Centered Gaussian noise on edges.
- Population 1: Hedge with $\eta_t^1 = t^{-0.1}$
- Population 2: Hedge with $\eta_t^2 = \frac{1}{2}t^{-0.5}$

Introduction	Convergence	Simulations	References
000000	000000000000000000	00000	

One realization



Figure: Population distributions and noisy path losses

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
the second s			

In Expectation

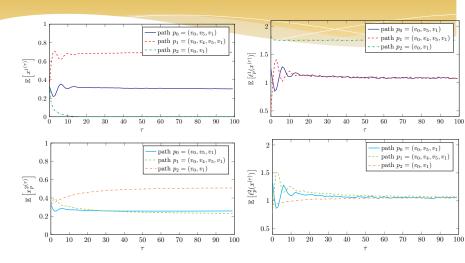


Figure: Population distributions and noisy path losses

32/37

Introduction Co	onvergence	Simulations	References
000000 00	000000000000000000000000000000000000000	000000	

One realization

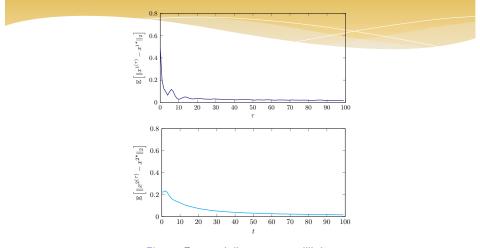


Figure: Expected distance to equilibrium

-			
000000	000000000000000000000000000000000000000	000000	
Introduction	Convergence	Simulations	References

Summary and Extensions

- How do players arrive at equilibrium? Any algorithm in the AREP or the DSMD class.
- How fast?

Convergence rates for the DSMD class.

Stability?

Nash equilibria are stable for these dynamics [4]

Robustness?

Robust to unbiased perturbation, e.g. when losses are not known but estimated. $% \label{eq:constraint}$

Extensions

- Provides a model of population dynamics for optimal control problems.
- Adapt to other problems, such as network consensus.

In Conference on Decision and Control (CDC), 2014

^[4] Benjamin Drighès, Walid Krichene, and Alexandre Bayen. Stability of nash equilibria in the congestion game under replicator dynamics.

6			
000000	000000000000000000000000000000000000000	000000	
Introduction	Convergence	Simulations	References

Summary and Extensions

- How do players arrive at equilibrium? Any algorithm in the AREP or the DSMD class.
- How fast?

Convergence rates for the DSMD class.

• Stability?

Nash equilibria are stable for these dynamics [4]

Robustness?

Robust to unbiased perturbation, e.g. when losses are not known but estimated.

Extensions

- Provides a model of population dynamics for optimal control problems.
- Adapt to other problems, such as network consensus.

In Conference on Decision and Control (CDC), 2014

^[4] Benjamin Drighès, Walid Krichene, and Alexandre Bayen. Stability of nash equilibria in the congestion game under replicator dynamics.

References

Thank you.

Introduction	Convergence	Simulations	References
000000	000000000000000000000000000000000000000	000000	
References I			

- Michel Benaïm. Dynamics of stochastic approximation algorithms. In Séminaire de probabilités XXXIII, pages 1–68. Springer, 1999.
- [2] Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: on convergence to nash equilibria of regret-minimizing algorithms in routing games. In *Proceedings of the twenty-fifth annual ACM symposium* on *Principles of distributed computing*, PODC '06, pages 45–52, New York, NY, USA, 2006. ACM.
- [3] Nicolò Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006.
- [4] Benjamin Drighès, Walid Krichene, and Alexandre Bayen. Stability of nash equilibria in the congestion game under replicator dynamics. In *Conference on Decision and Control (CDC)*, 2014.
- [5] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In Algorithms-ESA 2004, pages 323–334. Springer, 2004.

Introduction	Convergence	Simulations	References
000000	000000000000000000	000000	
References II			

- [6] James Hannan. Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3:97–139, 1957.
- [7] Walid Krichene, Benjamin Drighès, and Alexandre Bayen. On the convergence of no-regret learning in selfish routing. In *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*, pages 163–171. JMLR Workshop and Conference Proceedings, 2014.
- [8] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley-Interscience series in discrete mathematics. Wiley, 1983. ISBN 9780471103455.
- [9] William H Sandholm. Potential games with continuous player sets. Journal of Economic Theory, 97(1):81–108, 2001.
- [10] Jörgen W Weibull. Evolutionary game theory. MIT press, 1997.

