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Routing game
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Figure: Example network

Directed graph (V ,E)

Population k: paths Pk

Population distribution over paths xPk ∈ ∆Pk

Loss on path p: `p(x)
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Routing game

Equilibrium

x∗ = (x∗P1
, . . . , x∗Pk

) is an equilibrium if ∀k,〈
`Pk (x∗), x∗Pk

〉
≤ 〈`Pk (x∗), xPk 〉

Losses are minimal on the support of x∗Pk
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The routing game

One-shot routing game

Well understood

Useful for characterizing ‘steady-state’ behavior
Network performance (price of anarchy)
System optimal tolling
Other applications

Why study dynamics?

How do players arrive at equilibrium?

How fast?

Stability?

Robustness (noisy measurements)?
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Applications

Transportation networks Packet routing Load balancing
Time scale Day minute/second minute/second
Measurements Route delays Route delays Job completion
Decision model Distributed Distributed Can be centralized
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Convergence rate

How fast does the system reconverge to equilibrium?

Catastrophic failure: Mississippi river bridge collapse (2005)
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Convergence rate

How fast does the system reconverge to equilibrium?

Incident response: closure of I15 after fire on bridge during construction.
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How fast does the system reconverge to equilibrium?

Adding a link to the network: construction of the Millau Viaduct (2004)
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Convergence rate

How fast does the system reconverge to equilibrium?

Tolling: Electronic Road Pricing (ERP) in Singapore.
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Existing results

Continuous time:

General case of potential games, under a positive correlation condition [9]

Special case of routing games, under replicator dynamics [5]

Discrete time:

General class of no-regret dynamics, limited convergence result [2]

[9] William H Sandholm. Potential games with continuous player sets.
Journal of Economic Theory, 97(1):81–108, 2001

[5] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing.
In Algorithms–ESA 2004, pages 323–334. Springer, 2004

[2] Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: on convergence
to nash equilibria of regret-minimizing algorithms in routing games.
In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing,
PODC ’06, pages 45–52, New York, NY, USA, 2006. ACM
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Online learning model

Online learning model

At iteration t

Players of population k choose routes. Distribution x (t).

`Pk (x (t)) is revealed to players of population k.

Players update their distribution.

x
(t+1)
Pk

= uk(x
(t)
Pk
, history)

Main problem

Define a class C of algorithms (update rules) such that

uk ∈ C ∀k ⇒ x (t) → N

Extension: Losses are noisy ˆ̀Pk (x (t)) with

E[ˆ̀Pk (x (t))|x (t)] = `Pk (x (t))
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Convex potential

Rosenthal potential

f (x) Convex

∇xPk
f (x) = `Pk (x)

N = arg minx∈∆P1×···×∆PK f (x)

Optimality conditions:

〈`(x∗), x − x∗〉 ≥ 0 ∀x ⇔ ∀k, ∀xPk ,
〈
`Pk (x∗Pk

), xPk − x∗Pk

〉
≥ 0

Continuous time: f used as a Lyapunov function.

Discrete time: regret.
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Regret

Instantaneous regret:

r (t)(x) =
〈
`(x (t)), x (t) − x

〉

Equilibrium

x (t) → N ⇔ lim sup
t

sup
x

r (t)(x) ≤ 0
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Regret

Average cumulative regret

R(t)(x) =
1

t

∑
τ≤t

r (τ)(x)

Equilibrium

x̄ (t) =
1

t

∑
τ≤t

x (τ) → N ⇔ lim sup
t

sup
x

R(t)(x) ≤ 0

By convexity of f ,

f

1

t

∑
τ≤t

x (τ)

− f (x) ≤ 1

t

∑
τ≤t

f (x (τ))− f (x) ≤ 1

t

∑
τ≤t

〈
`(x (t)), x (t) − x

〉
= R(t)(x)
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Regret

Regret first defined by Hannan (1957) in the context of repeated games [6]

Large classes of algorithms have “no regret” guarantees, e.g. [3]

However, only guarantees convergence of x̄ (t), not x (t)

Seek additional conditions to guarantee x (t) → N .

Observation

If f (x (t)) is eventually monotone, then f (x (t))→ f ∗.

[6] James Hannan. Approximation to Bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97–139, 1957

[3] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006
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Replicator dynamics

Replicator equation

∀p ∈ Pk ,
dxk

p

dt
= xk

p

(
〈`Pk (x), xPk 〉 − `

k
p(x)

)
(1)

Also in evolutionary game theory, Weibull [10].

Theorem: Fischer and Vöcking [5]

Every solution of the ODE (1) converges to the set of its stationary points.

Proof: f is a Lyapunov function.

[10] Jörgen W Weibull. Evolutionary game theory.
MIT press, 1997

[5] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing.
In Algorithms–ESA 2004, pages 323–334. Springer, 2004
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Approximate REPlicator update

Discretization of the continuous-time replicator dynamics

x (t+1)
p − x (t)

p = ηtx
(t)
p

(〈
`k(x (t)), x

(t)
Pk

〉
− `k(x (t))

)
+ ηtU

(t+1)
p

(U(t))t≥1 perturbations that satisfy for all T > 0,

lim
τ1→∞

max
τ2:

∑τ2
t=τ1

ηt<T

∥∥∥∥∥
τ2∑

t=τ1

ηtU
(t+1)

∥∥∥∥∥ = 0

Michel Benäım. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1–68. Springer, 1999
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Convergence to Nash equilibria

Theorem Krichene et al. [7]

Under AREP updates, if ηt ↓ 0 and
∑
ηt =∞, then

x (t) → N

Affine interpolation of x (t) is an asymptotic pseudo trajectory.

x(0)

Φt0(x(0))

x(1) Φtk−2
(x(k−2))

x(k−1)

x(k)

Φtk−1
(x(k−1))

f is a Lyapunov function for Nash equilibria in the continuous system.

However, No convergence rates.

[7] Walid Krichene, Benjamin Drighès, and Alexandre Bayen. On the convergence of no-regret
learning in selfish routing.
In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages
163–171. JMLR Workshop and Conference Proceedings, 2014
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Stochastic Mirror Descent

minimize f (x) convex function

subject to x ∈ X ⊂ Rd convex, compact set

At iteration t

have a stochastic subgradient ĝ (t)

ĝ (t) unbiased: E
[
ĝ (t)|Ft

]
= g (t) ∈ ∂f (x (t)) (Ft natural filtration of (x (t)))

Algorithm 1 SMD Method with learning rates (ηt)

1: for t ∈ N do
2: ĝ (t) ∈ Ft+1

3: x (t+1) = arg min
x∈X

〈
ĝ (t), x

〉
+ 1

ηt
Dψt (x , x

(t))

4: end for
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ĝ (t), x

〉
+ 1

ηt
Dψt (x , x

(t))

4: end for



23/37

Introduction Convergence Simulations References

Stochastic Mirror Descent

minimize f (x) convex function

subject to x ∈ X ⊂ Rd convex, compact set

At iteration t

have a stochastic subgradient ĝ (t)
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Mirror Descent

f(x(t))

f(x(t+1))

f(x)

f(x(t)) + 〈g(t), x− x(t)〉

f(x(t)) + 〈g(t), x− x(t)〉 + 1
ηt
Dψ(x, x(t))

Figure: Mirror Descent iteration
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Bregman Divergence

Bregman Divergence

Strongly convex function ψ

Dψ(x , y) = ψ(x)− ψ(y)− 〈∇ψ(y), x − y〉

ψ(x) = 1
2
‖x‖2

2, Dψ(x , y) = 1
2
‖x − y‖2

2 (projected gradient)

ψ(x) = −H(x) =
∑d

i=1 xi ln xi , Dψ(x , y) = DKL(x , y) =
∑d

i=1 xi ln xi
yi

.

δ1

δ2

δ3

q

Figure: KL divergence
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Convergence rates

f ηt Convergence

Weakly convex c√
t

1
t

∑t
τ=1 E

[
f (x(τ))

]
− f ? = O( 1√

t
) [8]

c
tα
, α ∈ (0, 1) E

[
f (x(t))

]
− f ? = O

(
log t

tmin(α,1−α)

)
Strongly convex ηt → 0,

∑
ηt =∞ E

[
Dψ(x?, x(t))

]
= O

(
ηT + e−

∑t
T ητ

)
θ

`f t
α , α ∈ (0, 1) E

[
Dψ(x?, x(t))

]
= O(t−α)

Figure: Convergence rates of SMD. S. Krichene, W. Krichene, R. Dong, A. Bayen. In
preparation.

[8] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983.
ISBN 9780471103455
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Regret bound for SMD

Main ingredient:

Proposition

Assume Dψ bounded by D and E ‖ĝ‖2 ≤ G .
SMD method with (ηt). ∀t2 > t1 ≥ 0 and Ft1 -measurable x ,

t2∑
τ=t1

E
[〈

g (τ), x(τ) − x
〉]
≤

E
[
Dψ(x , x(t1))

]
ηt1

+D

(
1

ηt2
−

1

ηt1

)
+

G

2`ψ

t2∑
τ=t1

ητ (2)
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Distributed SMD with heterogeneous agents

X = X1 × · · · × XK

Agent k updates xk ∈ Xk

Dψk and ηkt depends on k

Algorithm 4 DSMD Method with learning rates (ηkt ) and divergences Dψk

1: for t ∈ N do
2: ĝ (t) ∈ Ft+1

3:

xPk

(t+1) = arg minxPk
∈Xk

〈
ĝ

(t)
Pk
, xPk − xPk

(t)
〉

+
1

ηkt
Dψk (xPk , xPk

(t))

4: end for
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Routing game with heterogeneous populations

2 3

0 1

4

5

6

Figure: Example network

Routing game with heterogeneous populations

Under unbiased noisy losses, with heterogeneous update rules with ηkt = θkt
−αk

E
[
f (x (t))

]
− f ? = O

(
t−min(mink αk ,1−maxk αk )

)
where f is the Rosenthal potential function
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Simulations

2 3

0 1

4

5

6

Figure: Example network

Centered Gaussian noise on edges.

Population 1: Hedge with η1
t = t−0.1

Population 2: Hedge with η2
t = 1

2
t−0.5
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One realization
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Figure: Population distributions and noisy path losses
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In Expectation
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One realization
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−
x
1
?
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t
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2
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−
x
2
?
‖ 2
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Figure: Expected distance to equilibrium
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Summary and Extensions

How do players arrive at equilibrium?
Any algorithm in the AREP or the DSMD class.

How fast?
Convergence rates for the DSMD class.

Stability?
Nash equilibria are stable for these dynamics [4]

Robustness?
Robust to unbiased perturbation, e.g. when losses are not known but
estimated.

Extensions

Provides a model of population dynamics for optimal control problems.

Adapt to other problems, such as network consensus.

[4] Benjamin Drighès, Walid Krichene, and Alexandre Bayen. Stability of nash equilibria in the
congestion game under replicator dynamics.
In Conference on Decision and Control (CDC), 2014
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Thank you.
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