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The swarm at the edge of the cloud

Infrastructural 
core 

Sensory Swarm 

Mobile Access 
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The Cloud 

TRILLIONS OF  
CONNECTED DEVICES 

Source: J. Rabaey [ASPDAC’08]



Wireless Sensor Webs Everywhere

Change detection: Thresholds, phase
transitions, anomalies

Security systems
Health care
Wildfire detection
Fault diagnosis
Tracking & surveillance



Action Webs in CPS Infrastructures

Supervisory Control & Data
Acquisition (SCADA)

Robust estimation
Noisy measurements
Lossy communication

Real-time control
Safety
Performance

COTS IT for SCADA
Cost ↓, Reliability ↑
Digital and IP based:
New vulnerabilities!
Reliability ⇒ Security

Wired networks are costly 
to maintain 

Typical industrial 
infrastructure ~ $10B 

Source: Emerson case study



Action Webs

Observe and infer for planning and
modifying action

Dealing with uncertainty
Tasking sensors
Programming the ensemble
Multiple objectives
Embedding humans

Example: Building energy management

Courtesy: Claire Tomlin



From Action Webs to Resilient CPS

Resilient/High Confidence Networked
Control

Fault-tolerant networked control
Limits on stability, safety, &
optimality
Scalable model predictive control

Security & Resilient Control
Availability, Integrity, &
Confidentiality
Graceful degradation

Economic Incentives
Incentive Design for investing in
security
Interdependent Risk Assessment &
Cyber Insurance



Societal Scale CPS

A complex collection of sensors, controllers, compute nodes,
and actuators that work together to improve our daily lives

From very small: Ubiquitous, Pervasive, Disappearing,
Perceptive, Ambient
To very large: Always Connectable, Reliable, Scalable,
Adaptive, Flexible

Emerging Service Models
Building energy management
Automotive safety and control
Management of metropolitan traffic flows
Distributed health monitoring
Smart Grid



Economical, Social and Environmental Drivers

Electricity Grid:
Smart meters are being used for demand response currently.
However, the potential of smart meters go far beyond D/R.
The market for energy analytics in the smart grid is estimated
to be worth $9.7 billion by 2020

Transportation Systems:
It is estimated that more than 4.2 billion hours are lost sitting
in traffic, resulting in 2.8 billion gallons of wasted fuel and
costing more than $ 87 billion dollars annually. By utilizing
CPS analytics in intelligent transportation systems (ITS) we
can actively manage our transportation network to improve
safety, efficiency, and multimodal connectivity.

Other Critical Infrastructures:
Healthcare systems, Water systems, Natural gas and Oil, ...
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Need for Incentives in Societal CPS

There is often a substantive gap between competitive Nash
equilibria and the social planner’s optimum (Hal Varian, et al).
Due to information asymmetries and misaligned objectives,
the actions taken by agents in S-CPS are not socially optimal.
Incentives are the natural mechanism for aligning agents so
that they behave in a socially optimal way.

In Energy CPS:
Consumers are not well informed about their energy
consumption patterns; utilities can use incentives to motivate
consumers to use less energy.

Iin Transportation CPS:
Drivers often travel at peak hours; incentives can be used to
encourage drivers to shift their departure time for some
reward resulting in overall reduced congestion.



Motivations for Incentive Design in Energy CPS

www.energystar.gov

Studies have shown that
providing device-level feedback
on power consumption patterns
to energy users can modify
behavior and improve energy
efficiency.

Provide incentives in the form
of rebates and monetary
rewards focusing on devices that
fall into largest consumption
categories in order to reduce
energy consumption.

Creyts, et al., Reducing U.S. greenhouse gas emissions: How much at what cost? U.S.
Greenhouse Gas Abatement Mapping Initiative, 2007.
Laitner, et al., Examining the scale of the behaviour energy efficiency continuum.
European Council for an Energy Efficient Economy, 2009.
Perez–Lombard, et al., A review on buildings energy consumption information. Energy
and Buildings, 2008.

www.energystar.gov


Incentive Design for Energy CPS Systems

The utility company must estimate the consumer’s utility
function as well as their device-level usage in order to design
incentives that result in modification of consumer behavior.

Ratliff, Dong, Ohlsson, Sastry. Behavior Modification and Utility Learning via Energy
Disaggregation. IFAC, 2014.



Energy Disaggregation or Non Intrusvie Load Monitoring

aggregated energy signal

household/building available measurements
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Approaches to Disaggregation
Hidden Markov Models

Unsupervised
Requires tuning of parameters.
The states are constant wattage
levels; usage patterns and
device signatures are encoded in
transition probabilities.

Sparse Coding

Supervised
Assume inputs are sparse.
Reconstruct the aggregate
signal by selecting as few
signatures as possible from a
library.



A New Systems Framework for Disaggregation

We learn dynamical models for the devices!:
We have theoretical results guaranteeing recovery of the most
likely device consumption signals.
We also learn dynamics of devices, which is useful for other
Smart Grid operations.



Disaggregation Summary

We take a semi-supervised, systems approach to energy
disaggregation by identifying dynamical models of the devices.
We utilize system dynamics and priors on device usage in our
approach to energy disaggregation to provide a way to
formulate and regularize an otherwise naturally ill-posed
problem.
In the energy disaggregation problem, questions of consumer
privacy arise naturally since a fundamental part of
disaggregation is inference about consumer behavior.



Incentive Design via Energy Disaggregation

Given an upper bound on the probability of distinguishing
devices, the utility company can design incentives that induce
the consumer to use the desired amount of energy for a device
with an error bound derived from the probability of
distinguishing devices.

Ratliff, Dong, Ohlsson, Sastry. Behavior Modification and Utility Learning via Energy
Disaggregation. IFAC, 2014.



Incentive Design Mechanisms introduce New
Vulnerabilities!

In regulated markets, utility companies are incentivized to reduce the overall
consumption of their consumer base.

Demand response programs incentivize customers to shift their demand thereby
alleviating inaccuracies in load forecasting. Device-level incentives can be
designed via non-intrusive load monitoring.

Introduces new vulnerabilities by allowing adversarial agents who may spoof
their energy signal or otherwise disrupt the energy system. .



Outline

Sensor Webs to Action Webs to Resilient CPS
Action Webs & Networked Control Systems (NCS)
Resilient Societal Scale CPS

Mechanism Design for Societal CPS
Disaggregation of CPS Big Data
Incentive Design Via Disaggregation pf CPS Big Data

Security
Financial Attacks on Societal CPS Systems
CPS Vulnerabilities
1. Threat assessment
2. Attack diagnosis
3. Resilient control

CPS Big Data and Privacy
Privacy in Societal CPS Systems

Conclusions and Future Research



Security: Revenue Protection

Non–technical losses are caused by actions external to the
power system such as theft, non–payment by consumers, or
errors in accounting.
Both faults and theft can be the result of adversarial agents
acting on the system, e.g. spoofing energy signals.

Reducing Technical and Non–Technical Losses in the Power Sector. World Bank
Group Technical Report, 2009.



Security: Revenue Protection

In conjunction with C3 Energy, we have developed algorithms
for detecting non-technical loss in the electricity grid.
We trained and tested our algorithms on data from a utility
company with over 30 million customers.
The data included time-series consumption data and meter
events from AMIs, weather data, customer demographics, and
work orders.
We identified ∼50 features and selected those that were
highly correlated with anomalous or tampering events.
We utilized machine learning algorithms to develop a model
for identifying non-technical loss.



CPS Attacks

Maroochy Shire sewage plant (2000)

Tehama Colusa canal system (2007)

Los Angeles traffic control (2008)

Cal-ISO power system computers (2007)



NCS/CPS security concerns

Attackers
Malicious insiders
Computer hackers

Cyber criminals
Cyber warriors
Hacktivists
Rogue hackers
Corporate spies

Stuxnet worm
Targets SCADA systems
Four zero-day exploits, antivirus evasion
techniques, p-2-p updates, network
infection routines
Reprograms Programmable Logic
Controller (PLC) code

Source: Symantec, NYT



Resilient Control for NCS
1 Threat assessment

How to model attacker and his strategy?
Consequences to the physical infrastructure

2 Attack diagnosis
How to detect manipulations of sensor-control data?
Stealthy [undetected] attacks

3 Resilient control
Design of resilient control algorithms
Tradeoffs between performance and containment
Incentive mechanisms to improve NCS reliability & security

Diagnosis 

Response Assessment 



Threat assessment

How to model attacker and his strategy?

Consequences to the physical infrastructure

Field operational test on the Gignac canal network
[Amin, Litrico, Sastry, Bayen. HSCC’10]

Models of deception and denial-of-service (DoS) attacks
[ Amin, Cárdenas, Sastry. HSCC’09]

Assessment for Tennessee Eastman process control system (TE-PCS)
[Cárdenas, Amin, Lin, Huang, Sastry. ASIACCS’11]



Gignac water canal network

SCADA components
Level & velocity sensors
PLCs & gate actuators
Wireless communication
Multiple stakeholders

Communication station

GIGNAC 

ASA : Canal manager  

Feeder canal : 8 km 

Right Bank : 15 km 

Secondary channels 
: ~270 km 

Left Bank : 30 km 

Map of Gignac canal

Presented by permission from Cemagref, France



Gignac canal network

Physical infrastructure Cyber infrastructure

h



Reported attacks on water SCADA systems

Gignac canal system attacks
Stealing water by compromising sensors
Tampering PLCs
Theft of solar panels

Other SCADA vulnerabilities
Time between telemetry requests can be
used for malicious traffic injection
Encryption provides confidentiality but
does not provide data integrity

Courtesy: C. Hugodot, Manager



Cyber-attack on the Avencq canal pool

Successful attack



Taxonomy of Attacks on NCS

Cyber Attacks
SCADA Manager [IT Security] A6

Unauthorized access, Viruses
Supervisory Control A3-A5

Deception: set-point change,
parameter substitution
Denial-of-Service (DoS):
network flooding, process
disruption

Regulatory Layer A1-A2
Deception: compromise of
measurements & controls,
spoofing, replay
DoS: jamming, ↑ comm. latency

Pool i 

PLC PLC  PLC 

Manager 

Fault Administration 
Set-point Optimization 

Fault Detection & Isolation (FDI) 

Actuator 

Offtake 

Sensor 
Field Network 

Pool i+1 

A6 

A5 

A4 

A2 
A1 

A3 

A0 

Physical Faults [Control th.] A0
Sensor-actuator faults
Unauthorized leaks



Attack diagnosis
How to detect manipulations of sensor-control data?

Stealthy [undetected] attacks

Observer-based diagnosis for Gignac SCADA system
[Amin, Litrico, Sastry, Bayen. IEEE TCST’11 ]

Non-parametric CUSUM statistic based diagnosis for TE-PCS
[Cárdenas, Amin, Sastry, et.al. ASIACCS’11]

Study of stealthy attacks on power system state estimators
[Teixeira, Amin, Sandberg, Johansson, Sastry. IEEE CDC’10]



Attacks on supervisory control layer

Supervisory Layer Attacks A3
Deception: set-point change,
parameter substitution
Denial-of-Service (DoS):
network flooding, process
disruption

Physical Faults/Attacks A0
Sensor-actuator faults
Unauthorized withdrawals

Pool i 

PLC PLC  PLC 

Fault Detection & Isolation (FDI) 

Actuator 

Offtake 

Sensor 
Field Network 

Pool i+1 

A3 

A0 

Design of a model-based diagnosis scheme



Recommendations on Security Diagnosis

Recommendations to the European Commission on Canal
Automation & the Cemagref Research Institute

Enhanced model (redundancy) improves detection
Sensors located closer to the offtakes are critical
Localized sensor attacks do not lead to global degradation
Multiple pool sensor attacks can evade detection [stealth]



Attack diagnosis for [other] SCADA systems
Process control

Computing Blocks

[Cárdenas, Amin, Lin, Huang, Sastry. ASIACCS’11]

Power transmission

Power Grid

State
Estimator

+
Bad Data
Detection

Contingency
Analysis

Optimal
Power Flow

Operator

Attacker Control Center

z = h(x) x̂
r = z− ẑ

x̂

Alarm!

u∗

u

a

[Teixeira, Amin, Sandberg, Johansson, Sastry. IEEE CDC’10]



Resilient control
Design of resilient control algorithms?

Fundamental limitations & interdependent security

Stability of hyperbolic PDEs under switching boundary control
[Amin, Hante, Bayen. IEEE TAC’10]

Incentives to secure under network induced interdependent risks
[Amin, Schwartz, Sastry. GameSec’10]

Safety-preserving control for stochastic systems under comm. losses
[Amin, Cárdenas, Sastry. HSCC’09]



Attacks on regulatory control layer

Regulatory layer A1-A2
Deception: compromise of
measurements & controls
DoS: jamming, ↑ latency

Physical faults or attacks A0
Sensor-actuator faults
Unauthorized withdrawals

Pool i 

PLC PLC  PLC 

Actuator 

Offtake 

Sensor 
Field Network 

Pool i+1 

A2 
A1 

A0 

Switching attacks can lead to instability!
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Privacy Issues

In energy CPS:
Disaggregation can be used to infer a
person’s schedule.
Disaggregation can be used to infer
specific consumption of entertainment

In transportation CPS:
Smart phone data can be used to
supplement sensor data in intelligent
transportation systems.
Driver intent and transit patterns can
be inferred from disaggregated traffic
data or from GPS data.



Privacy Issues in Energy CPS

Data minimization principle (NISTIR 7628)
Limit the collection of data to only that necessary for Smart Grid
operations, including planning and management, improving energy
use and efficiency, account management, and billing.

But can we quantify these ideas?
Quantify trade-off between amount of data and performance
of Smart Grid ?
Analyze the amount of private information which can be
inferred from data.

The power consumption signal is not private in and of itself. It is
what we can infer that is private.

Household occupancy.
Behavioral patterns.
Which devices are present in a household, and their usage.



Privacy Formulation

If an AMI measures only the aggregate power consumption, what
can we infer?
Recall the problem of energy disaggregation:

aggregated energy signal

household/building available measurements

This leads to our notion of privacy. In this model, our adversary:
Observes the AMI signals
Has knowledge of what devices are in the house
Knows the dynamics and signatures of these devices

What can he infer?



Privacy Metrics

We can place an upper bound on the probability of successfully
distinguishing devices.

These bounds are properties of the disaggregation problem itself
and hold for any algorithm.

This upper bound can thus act as a guarantee for privacy.

Inputs u1 and u2. For each input, the aggregate power
consumption signal follows distributions F1 and F2,
respectively.
For simplicity, we assume these distributions to be Gaussian.
F1 and F2 have means µ1 and µ2, and both distributions have
the same covariance σ2I.

Dong, Ratliff, Ohlsson, Sastry. Fundamental Limit of Non-Intrusive Load Monitoring.
HiCoNS, 2014.
Ratliff, Dong, Ohlsson, Cárdenas, Sastry. Privacy and Customer Segmentation in the
Smart Grid. Submitted to CDC, 2014.



Privacy Theorems: Gaussian case

Theorem
If u = v0 with probability 1/2 and u = v1 with probability 1/2, and
if G(v0)∼ N(µ0,Σ),G(v1)∼ N(µ1,Σ) are independent, then for
any NILM algorithm S and deciding function I:

P((I ◦S)(G(u)) = u) 6 1
2

(
1− erf

(
− 1
‖a‖2 (aT µ0 +b)
√
2σ2

))

with
aT = (µ0−µ1)T Σ−1

b = 1
2

(
µ

T
1 Σ−1µ1−µ

T
0 Σ−1µ0

)
σ
2 = 1
‖a‖22

aT Σa = (µ0−µ1)T Σ−1(µ0−µ1)
(µ0−µ1)T Σ−2(µ0−µ1)

Generalizations to M inputs is easy!



Privacy versus Performance Tradeoffs
Quantify the trade-off between the amount of data and the
performance of Smart Grid operations.

For a direct load control (DLC) application, consider the
simple model:

xk+1 = xk +uk + µk +dk

xk ∈ R is the power consumption of a unit (e.g. HVAC, sector
of grid) at time k.
uk ∈ R represents the DLC signal.
µk ∈ R represents the affine term which generates our nominal
demands.
dk represents the disturbance.

A privacy-aware sampling policy:
DLC policies must be employed to return the power
consumption to the nominal demand.
Controller receives measurements every N time steps yet issues
control commands at every time step.
H∞: measure of how much the uncertainty in demand gets
amplified.

We can analyze how the H∞ increases as N, the downsampling
rate, increases.



Downsampling policies

Analyze the amount of private information which can be inferred
from data.

We can use our results to analyze how privacy increases as N, the
downsampling rate, increases.
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Ratliff, Dong, Ohlsson, Cárdenas, and Sastry 2014, Under review.



Privacy Contracts

The utlity company selects down-sampling as a privacy
preserving metering policy. Then,

The performance of direct load control is dependent on the
sampling rate.
Higher sampling rates result in improved performance of the
direct load control scheme with diminishing returns.

Contract Design:
Utility company can design screening mechanisms to obtain the
consumer’s privacy preferences (unknown type) by offering
contracts where privacy is the good and privacy-setting is the
quality of the good.



Privacy Contracts: Two-Type Model

The contracting device that the utility company can use is the
privacy setting that they offer to the consumer.
There are two privacy settings offered: xL,xH such that
xL 6 xH , xL,xH ∈ R.
The consumer type θ is unknown to the utility company.
We consider two types: θ ∈ {θL,θH} where θ represents how
much the consumer values privacy.



Privacy Contracts: Two-Type Model

Utility company announces price t for choosing privacy level
x . The consumer’s utility is equal to zero if he does not select
a privacy setting, and it is

U(x ,θ)− t > 0 (Individual Rationality)

Assumption: U is increasing in (x ,θ).
Incentive-compatibility: all of the participants fare better
when they truthfully reveal any private information asked for
by the mechanism:

U(xH ,θH)− tH > U(xL,θH)− tL

U(xL,θL)− tL > U(xH ,θL)− tH



Privacy Contracts: Utility Company
Utility company’s utility function:

v(x , t) = t−g(x)

where g(x) is the unit cost resulting from the privacy setting x and
is a strictly increasing, continuous function.

Screening Problem

max
{(tL,xL),(tH ,xH)}

(1−p)v(xL, tL) +pv(xH , tH)

s.t.U(xi ,θi )− ti > 0, i = H,L
U(xH ,θH)− tH > U(xL,θL)− tL
U(xL,θL)− tL > U(xH ,θL)− tH

where p = Prb(θ = θH) = 1−Prb(θ = θL) ∈ (0,1) (prior on
distribution of types in the population)



Simplification of the Contract Design Problem

Depending on the form of U(x ,θ) and g(x) this problem can
be difficult to solve.
Assumption: U(x ,θH)−U(x ,θL) is increasing in x (marginal
gain from raising the value of the privacy setting).
The individual rationality and incentive compatibility
constraints reduce to

tH − tL = U(xH ,θH)−U(xL,θH)
tL = U(xL,θL)

Reduced screening problem{
maxxH{U(xH ,θH)−g(xH)}
maxxL{−p(U(xL,θH)−U(xL,θL)) + (1−p)(U(xL,θL)−g(xL))}
Ratliff, Dong, Ohlsson, Cárdenas, Sastry. Privacy and Customer Segmentation in the
Smart Grid. Submitted to CDC, 2014.



Privacy Contracts for Direct Load Control

Recall DLC example: as you decrease the sampling rate the performance
degrades, i.e. the H∞ norm increases, and it degrades in a linear way.

Let g(x) = ζx , 0< ζ < ∞.

Utility company’s utility
function v(x , t) = t−g(x).

p = P(θ = θH).

Consumer’s utility
U(x ,θ) = 1

2 (x̄2− (x − x̄)2)θ

Optimal quality:

(x∗H ,x∗L) =
(
x̄ − ζ

θH
,

[
x̄ + (1−x)ζ

(pθH −θL)

]
+

) p0 p0 1

x†
L

x∗L

x∗H = x†
H

x
x̄ − ζ

θH

x̄ − ζ

θL

Ratliff, Dong, Ohlsson, Cárdenas, Sastry. Privacy and Customer Segmentation in the
Smart Grid. Submitted to CDC, 2014.



Privacy Contracts in Energy CPS

We view consumers as utility maximizers and privacy as a good!
Based on their valuation of privacy as a good, consumers can
select the quality of the service contract with the utility
company.
Electricity service is offered as a product line differentiated
according to privacy where consumers can self-select the level
of privacy that fits their needs and wallet.
Revenue Protection: Utility company has a right to find out if
a consumer is hiding behind privacy to steal electricity.
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Big Data in Resilient CPS

Resilient CPS Systems
Assessment, detection & response
Networked and fault-tolerant control
Disaggregation of Big Data in Societal
CPS systems: Unsupervised and
Supervisedd
Fundamental Limits of Performance

Mechanism Design
Incentive Theory for Cost Effective
operations of Societal CPS Systems
Utility Based Privacy Metrics
Contract Mechanisms to Allow for
Privacy Opt-In

Sensor Actuator
Network 

Physical Infrastructures
Buildings

Transportation
Water & Gas

Electric Power

Detection and Regulation

Control Network

Diagnosis, Response, and Reconfiguration

Reliability and Security Risk Management

Attacks Defenses Faults

Internet



Thank you for your attention. Questions?

Shankar Sastry
sastry@coe.berkeley.edu
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