

Data-Driven Modeling of Aircraft Engine Performance

Yashovardhan S. Chati, Hamsa Balakrishnan 28 May 2015

Research Objectives

- * 'Hybrid'* models of aircraft engine performance
 - * Physical principles + operational flight data (e.g. from FDR)
 - Aircraft engine performance + statistical data analysis/machine learning
- * Intended intellectual outputs of the research
 - * Methodology and techniques used to build the models
 - * The models themselves

^{*}Jaw, L. C., and Mattingly, J. D., Aircraft Engine Controls: Design, System Analysis, and Health Monitoring, AIAA, Inc., Reston, Virginia, 2009, Chap. 8.

Current Practice

- * Gas turbine performance simulation softwares
 - Require knowledge of engine parameters not easy to access
- * Data-driven models of engine performance
 - * Non-operational data from flight manuals, ground tests
 - Inability to quantify variability in performance for the same engine type (pilot behavior, operational and maintenance procedures, etc.)
- * ICAO Engine Exhaust Emissions Databank
 - * Fixed values of fuel flow rates for a particular engine type
 - * Point estimates: no characterization of variability in fuel flow

Novelty in Our Approach

- * Use of operational flight data from FDR to build models
 - * Bypass need to know internal engine parameters
 - * Capture variability in performance of the same engine type
- * Combination of physical insights and data analysis techniques
 - Ensure data-based models conform to physical principles governing engine performance

Foreseen Uses of Our Research

- * Generation of fuel burn and emissions inventories
- * Development of flight paths optimal on fuel burn
- Methodology behind model building can give insights into the application of data analysis techniques to aeronautical datasets
- Models built on operational flight data are abstractions of such data
 - Can be used by researchers as tools in the absence of raw operational data

Risks and Payoffs

* Risks

- * Performance of models outside range of training data?
- * Scale of model applicability (aircraft types, O-D pairs)?
- * Payoffs
 - * Potential 'proof of concept'
 - * Merits of using operational data to model engine performance
 - Methods can be used to expand the models as more data are available

Regression Methodology

* Conservation of energy:

 $\dot{m_{f_n}} = \dot{m_{f_n}}(h, GS_n, W_{TO_n}, VS_n)$

- * Predictor variables: pressure altitude (in m), normalized ground and vertical speeds, normalized takeoff mass
- * Response variable: normalized fuel flow rate
- 65% data in training set, 35% in test set, 95% bootstrapped prediction intervals
- Method: Classification and Regression Trees (CART)

Performance of CART Models (fuel flow rates corrected to SLS uninstalled conditions)

* Sample mean prediction error:

Phase/Method	CART	ICAO Databank
Climb out (<= 3000' AGL)	1.03 – 4.78%	6.16 - 33.76%
Approach (<= 3000' AGL)	13.65 – 23.23%	34.95 - 97.59%

* 95% prediction interval coverage:

Phase/Method	CART	ICAO Databank
Climb out (<= 3000' AGL)	49.20 - 63.79%	0
Approach (<= 3000' AGL)	52.53 - 61.23%	0

The Journey Ahead

- Study of more data analysis methods and choice of model variables and evaluation metrics
- * Modeling of other engine performance parameters (thrust, pressure ratios, temperatures, spool speeds, ...)
- * Time series analysis of a single flight
- Development of generalized models for different aircraft/engine types from trajectory data
 - Clustering into groups

THANK YOU

BACKUP SLIDES

Regression Methodology

* Conservation of energy:

$$\dot{m_f} = \dot{m_f}(\rho, V, W, S, t)$$

* Assuming ISA conditions, no winds aloft, VS = $\Delta h/\Delta t$:

$$\dot{m_f} = \dot{m_f}(h, GS, W_{TO}, VS)$$

 Normalizing fuel flow rate by ICAO databank values, speeds by cruise speed, and mass by MTOW:

$$\dot{m_{f_n}} = \dot{m_{f_n}}(h, GS_n, W_{TO_n}, VS_n)$$

- Predictor variables: pressure altitude (in m), normalized ground and vertical speeds, normalized takeoff mass
- Response variable: normalized fuel flow rate
- * 65% data in training set, 35% in test set, 95% bootstrapped prediction intervals
- * Method: Classification and Regression Trees (CART)

Performance of CART Models (fuel flow rates corrected to SLS uninstalled conditions)

Approach (<= 3000' AGL)

Climb out (<= 3000' AGL)

