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+ ‘Hybrid™ models of aircraft engine performance
« Physical principles + operational flight data (e.g. from FDR)

+ Aircraft engine performance + statistical data analysis/machine
learning

* Intended intellectual outputs of the research
+ Methodology and techniques used to build the models
* The models themselves

*Jaw, L. C., and Mattingly, J. D., Aircraft Engine Controls: Design, System Analysis, and
Health Monitoring, AIAA, Inc., Reston, Virginia, 2009, Chap. 8.
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 Gas turbine performance simulation softwares

* Require knowledge of engine parameters — not easy to access

+ Data-driven models of engine performance
* Non-operational data from flight manuals, ground tests

* Inability to quantify variability in performance for the same engine
type (pilot behavior, operational and maintenance procedures, etc.)

+ 1CAO Engine Exhaust Emissions Databank
+ Fixed values of fuel flow rates for a particular engine type
 Point estimates: no characterization of variability in fuel flow
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+ Use of operational flight data from FDR to build models
+ Bypass need to know internal engine parameters
+ Capture variability in performance of the same engine type

* Combination of physical insights and data analysis techniques

* Ensure data-based models conform to physical principles governing
engine performance
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+ Generation of fuel burn and emissions inventories

+ Development of flight paths optimal on fuel burn

+ Methodology behind model building can give insights into the
application of data analysis techniques to aeronautical datasets

+ Models built on operational flight data are abstractions of such
data

* Can be used by researchers as tools in the absence of raw
operational data

Page 5 CYBER-PHYSIOAL SYSTEMS 2/27/2017



+ Risks
+ Performance of models outside range of training data?
+ Scale of model applicability (aircraft types, O-D pairs)?

 Payoffs
+ Potential ‘proof of concept’
* Merits of using operational data to model engine performance

* Methods can be used to expand the models as more data are
available
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+ Conservation of energy:

my, = my,(h, GSn, Wro,,, VSn)

* Predictor variables: pressure altitude (in m), normalized ground
and vertical speeds, normalized takeoff mass

 Response variable: normalized fuel flow rate

+ 65% data in training set, 35% in test set, 95% bootstrapped
prediction intervals

* Method: Classification and Regression Trees (CART)
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 Sample mean prediction error:

Phase/Method CART ICAO Databank

Climb out (<= 3000’ AGL) 1.03 — 4.78% 6.16 — 33.76%
Approach (<=3000’ AGL)  13.65-23.23%  34.95 - 97.59%

+ 95% prediction interval coverage:

Phase/Method CART ICAO Databank

Climb out (<= 3000’ AGL) 49.20 - 63.79% 0
Approach (<=3000’ AGL)  52.53 - 61.23% 0
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 Study of more data analysis methods and choice of model
variables and evaluation metrics

* Modeling of other engine performance parameters (thrust,
pressure ratios, temperatures, spool speeds, ...)

+ Time — series analysis of a single flight

+ Development of generalized models for different aircraft/engine
types from trajectory data

+ Clustering into groups
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BACKUP SLIDES
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Conservation of energy:

g = mig(p,V,W, 5,1

Assuming ISA conditions, no winds aloft, VS = Ah/At:
miy =nig(h, GS,Wro,VS)

Normalizing fuel flow rate by ICAO databank values, speeds by cruise speed, and mass
by MTOW:

my, = my,(h, GSn, Wro,,, VSn)

Predictor variables: pressure altitude (in m), normalized ground and vertical speeds,
normalized takeoff mass

Response variable: normalized fuel flow rate
65% data in training set, 35% in test set, 95% bootstrapped prediction intervals
Method: Classification and Regression Trees (CART)
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Predicted response (corrected to SLS

ISA uninstalled conditions)

Performance of CART Models

(fuel flow rates corrected to SLS uninstalled conditions)
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