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Learning	Models	of	Human	Behavior
With	new	services	and	emerging	markets,	humans	
are	transitioning	from passive to	active participants		

• People’s	decisions	are	increasingly	sequential		and	
depend	on	a	number	of	exogenous	and	endogenous	
factors
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Learning	Models	of	Human	Behavior

Goal:
Leverage	increasingly	fine-grained	decision-
making	data	to	learn	plausible	models	of	human	
behavior	and	preferences	from	data

What	do	we	want	out	of	these	models?

• Accuracy:	for	use	in	control	and	incentive	schemes.

• Interpretability:	policy	makers,	system	designers,	etc.	
need	to	be	able	to	understand	what	the	models	are	
capturing.
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Risk-Sensitive	Decision	Making

People	are	not	completely	rational	agents
• Treat	losses	and	gains	differently
• Make	decisions	based	on:

• Warped	event	probabilities
• Comparisons	to	reference	points

[2],[3]	



Prospect	Theory	
1. People	tend	to	warp	event	probabilities:

• Overweight low	probability	events
• Underweight high	probability	events

2. People	compare	outcomes	to	reference points
• Outcomes	with	higher	values	are	“gains”	and	

losses	otherwise
• Losses	tend	to	loom	larger	than	gains

3. Risk-Attitudes are	impacted	by	the	reference	
points
• People	are	risk-averse on	gains	and	risk-

seeking on	losses	(concave	vs.	convex)	shape
[2]-[4]	



Risk-Sensitive	Q-Learning
• MDP	Framework:

• We	consider	a	class	of	finite	MDPs	{X,A,P,R},	where
• X -State	space
• A - Action	Space
• P(x’|x,a) - transition	Kernel
• R:																							- reward	function

• Agents	are	Risk-Sensitive	and	process	their	observations	through	their	value	
functions

𝑋	×	𝐴 → ℝ



Value	Functions
Prospect	Theory:

Entropic	Map:
• Historically	used	in	economics	and	finance	to	model	risk-sensitivity,		𝜆

determines	risk-sensitivity

𝜆 < 0

𝜆 > 0

[2]-[4]	

• Kahneman &	Tversky:

• Log	Prospect	Function:
• Lipschitz	approximation	to	classical	

prospect	theory	function		

u(y) =

(
c+(y � r0)⇢+ , if y � r0
c�(y � r0)⇢� , otherwise

u(y) =

(
c+ log (⇢+(y � r0) + 1), if y � r0
c� log (⇢�(r0 � y) + 1), otherwise

Incorporates	reference	point,						,	and	different	risk	sensitivities	for	gains	and	losses	



Valuation	Functions
Valuation	functions	generalize	the	expectation to	capture	risk-
sensitivity:

In	the	risk-sensitive	MDP	formulation,	we	introduce	the	valuation	map:

[4]-[6]	

is	a	Valuation	Function	if	for	each															:



Utility–Based	Shortfall	Valuation
We	use	the	utility-based	shortfall valuation	map:

• Comparison	to	an	“acceptance	level”,	x0

• Long	been	used	it	mathematical	finance,	and	economics

• For	simplicity	we	often	use,	x0=u(r0)



Risk-Sensitive	Q-Learning
We	start	by	defining	the	cost-to	go associated	with	a	policy	𝜋 and	
initial	state	x0:

Now	we	can	define	the	value	function,	V* of	the	MDP:

Now,	given	our	value	function,	we	define	our	Q-function:

[4]-[6]	



Risk-Sensitive	Q-Learning

[4]-[6]	

Risk	–Sensitive	Q-Learning	Update:	The	value	function	is	applied	to	the	temporal	differences

Q-Learning Risk	Sensitive	
Q-Learning



Inverse	Risk-Sensitive	Reinforcement	Learning

Goal:
Given	observations	of	an	Agent’s	sequential	
decisions,	we	would	like	to	infer	the	decision-
making	model	of	the	agent.

We	assume	that	the	agent	in	question	(the	human)	is	operating	according	to	our	forward	
model:	



We	assume	that	the	agent	(the	human)	is	operating	according	to	our	forward	model,	
meaning:	



Optimization	Formulation

Given	the		and	data	from	the	agent	operating	in	the	MDP,																																							,	
we	would	like	to	tune	the	parameters					,	to	minimize	some	loss,																										:

Goal:	We	would	like	to	solve	this	using	gradient	methods.	
(Why?	– easy	to	implement	and	use	local	information,	large	
number	of	approaches,	potentially	scalable,…)	



Optimization	Formulation
Goal:	We	would	like	to	solve	this	using	gradient	methods.	
(Why?	– easy	to	implement	and	use	local	information,	large	
number	of	approaches,	potentially	scalable,…)	

Challenges:		
• Problem	is	highly	non-convex		- many	parameterizations	

can	yield	the	same	loss

• Computing	the	derivative	of						wrt requires	computing	
the	derivative	of	Q* wrt
• in	general,																							is	non-differentiable



Optimization	Formulation	– Gradient	Calculation



Optimization	Formulation	– Loss	Functions

Why	one	or	the	other?

• In	general,	the	inverse	problem	is	ill-posed

• The	log-likelihood	loss	function	encourages	mimicking	the	observed	
behaviors	(may	over	fit	to	states	that	are	over-represented	in	dataset)

• The	KL-divergence	prioritizes	finding	parameters	that	match	the	empirical	
policy	across	all	states	uniformly.	



Sample	Complexity
How	can	we	assess	how	the	performance	of	our	algorithm	varies	with	the	
amount	of	data?

• Challenge:	We	do	not	have	access	to	the	policy	of	the	“true	agent”	𝜋(- |𝑥),	but	to	the	
empirical	policy	of	the	agent	𝜋1 - 𝑥

• Challenge:	Non-convexity	of	the	objective	function

Using	properties	of	the	SLLNs	and	properties	of	discrete	probability	distributions,	
with	probability	1- 𝜌	:	



• This	gives	us	a	bound,	per	state,	on	how	well	the	learned	value	function	can	recreate	the	behavior.

• It	also	implicitly	tells	you,	what	states	you	are	most	uncertain	about	and	therefore	which	states	you	
should	collect	more	data	from.

• Thus,	at	best,	the	convergence	of	the	policy	under	the	learned	value	function	to	the	”true”	policy	is	

O 1
n� ,	where	n	is	the	number	of	trajectories	sampled	from	the	agent.

Sample	Complexity

Depends	only	on	data Depends	only	on	training	error



Example	1:	Risk-Sensitive	Agents	in	Grid	World
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Dynamics:	

• Black	and	Green	states	are	absorbing

• The	agent	moves	in	their	desired	direction	
with	probability		0.93	and	a	random	other	
direction	with	probability	0.07





Even	though	the	problem	is	ill-posed,	the	true and	learned value	functions	are	similar	when	scaled.	



Sample	Complexity	– Qualitative	Results

For	each	data	point:

1. 5	datasets	of	the	given	size	
were	collected.	

2. For	each	dataset,	the	IRL	was	
performed	with	5	random	
initializations	and	the	best	
performance	on	each	dataset	
was	recorded	and	averaged



Sample	Complexity	– Qualitative	Results
This	suggests	the	limiting	factor	in	how	well	our	IRL	approach	can	perform,	is	how	well	the	data	
approximates	the	true	policy



Example	2:	Ride	Sharing
Sensitivity	of	agents	to	travel	time	and	cost	of	ride-sharing	
trips

1. We	collected	data	from	a	ride-sharing	service	and	
constructed	an	MDP,	where	the	rewards	had	noise	and	
were	a	mix	of	travel	time	and	price:

i. The	states	are	price	multiplier	– time	of	departure
tuples.

ii. The	actions	are	to	either	wait,	or	take	a	ride.

iii. If	the	agent	takes	a	ride,	they	exit	the	grid,	otherwise	
they	move	to	the	next	time	step	and	the	surge	price	
increases	or	decreases	with	dynamics	derived	from	data.

2. We	then	trained	various	agents	in	the	MDP	and	
performed	the	I-RSRL.	



Example	2:	Ride	Sharing

Again,	the	I-RSRL	learns	a	
value	function	that	can	
accurately	recreate	the	
policy	of	the	agent.

• In	each	state	we	show	the	
probability	of	taking	the	ride	at	the	
current	surge	price

• An	agent	that	is	risk-seeking	on	
losses	waits	longer	to	take	a	ride	if	
the	surge	is	high



Summary
1. Overview	of	Risk-Sensitive	Decision	Making

2. Risk-Sensitive	Q-Learning

3. Inverse	Risk-Sensitive Reinforcement	Learning
• Problem	Formulation
• Theoretical	Results
• Example:	Risk-Sensitive	agents	in	Grid	World
• Example:	Sensitivity	to	Surge-Pricing	in	Ride-Sharing



• Design	control	and	incentive	schemes	around	the	learned	value	functions	
to	achieve	some	system	goal

• Incorporate	different	risk	measures	(VaR,	coherent	risk	measures,	etc.)

• Learning	representative	utilities	from	populations	of	users

• Learning	reference	points

• Natural	Gradients

Conclusion	and	Future	Work
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