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Abstract— Hamilton-Jacobi (HJ) reachability is a method
that provides rigorous analyses of the safety properties of dy-
namical systems. This method has been successfully applied to
many low-dimensional dynamical system models such as coarse
models of aircraft and quadrotors in order to provide safety
guarantees in potentially dangerous scenarios. These guarantees
can be provided by the computation of a backward reachable
set (BRS), which represents the set of states from which the
system may be driven into violating safety properties despite the
system’s best effort to remain safe. Unfortunately, HJ reacha-
bility is not practical for high-dimensional systems because the
complexity of the BRS computation scales exponentially with
the number of state dimensions. Although numerous approx-
imation techniques are able to tractably provide conservative
estimates of the BRS, they often require restrictive assumptions
about system dynamics without providing an exact solution.
In this paper we propose a general method for decomposing
dynamical systems. Even when the resulting subsystems are
coupled, relatively high-dimensional BRSs that were previously
intractable or expensive to compute can now be quickly and
exactly computed in lower-dimensional subspaces. As a result,
the curse of dimensionality is alleviated to a large degree
without sacrificing optimality. We demonstrate our theoretical
results through two numerical examples: a 3D Dubins Car
model and a 6D Acrobatic Quadrotor model.

I. INTRODUCTION

As the presence of safety-critical systems in everyday
life has grown, so has the importance for the verification
of these systems. Within the next decade we expect to
see a rapid increase in the use of safety-critical systems
such as autonomous cars, unmanned aerial vehicles, and
other robots. Given the number and density of autonomous
systems expected in civilian space, higher-fidelity models are
needed to more accurately characterize these systems so that
safety can be guaranteed. In addition, analysis of higher-
dimensional dynamical system models has the potential to
provide valuable insight into the behavior of system states
that are frequently ignored to keep the system dimensionality
low. Thus, tractable verification tools that are not overly
conservative are urgently needed.

Optimal control and differential game theory are powerful
tools for the verification of non-linear systems due to their
flexibility with respect to system dynamics, treatment of un-
known disturbances, and guaranteed optimality [1], [2], [3],
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[4]. Reachability analysis is core to these methods; here, the
goal is to compute the backward reachable set (BRS), defined
as the set of states from which the system can be driven into
some unsafe set despite using the optimal control to avoid
the unsafe set. Hamilton-Jacobi (HJ) reachability has been
successfully used to guarantee safety for low-dimensional
systems in application such as pair-wise collision avoidance
[2], automated aerial refueling [5], and many others [6],
[7]. HJ reachability theory is also very convenient to use
due to the many numerical tools available to obtain optimal
solutions [8], [9], [10].

Despite these advantages, HJ reachability can be imprac-
tical for many high-dimensional systems due to issues with
scaling. HJ reachability-based methods involve solving a
partial differential equation (PDE) or variational inequality
on a grid representing a numerical discretization of the
state space. As a result, the computation complexity scales
exponentially with the system dimension. Application of
current formulations of HJ reachability is limited to sys-
tems with approximately five dimensions or fewer, making
the verification of most high-dimensional system models
intractable.

For the analysis of high-dimensional systems, a number
of approximation techniques exist. Unfortunately, these tech-
niques usually place strong assumptions on system dynamics,
such as requiring a polynomial form [11], [12], a linear form
[13], [14], or a Hamiltonian that is only dependent on the
control variable [15]. Other methods that are less restrictive
in terms of system dynamics include [16], which works with
projections, and [17], which involves treating system states as
disturbances. In all of the methods mentioned so far, varying
degrees of approximation or conservatism is introduced.
Under some special scenarios such as those outlined in [18]
or [19], a small dimensionality reduction may be possible
when obtaining exact optimal solutions.

The previous methods either are forced to trade off be-
tween optimality and computation complexity or provide
only a small dimensionality reduction. In contrast, this paper
presents the self-contained subsystem (SCS) formulation for
computing exact, optimal solutions of systems with dynamics
while drastically reducing dimensionality. Motivated by the
need to provide safety guarantees, we compute BRSs in
lower-dimensional subspaces of the full system state space,
and then combine these low-dimensional BRSs to exactly
construct the full-dimensional BRS. The full-dimensional
BRS can be exactly constructed through back projections
of the lower-dimensional BRSs even with coupling between
the different subsystems. Furthermore, the theory we present
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in this paper is compatible with any other method such
as [17] and [18]. When different methods are combined
together, even more substantial dimensionality reduction can
be achieved.

This paper will be presented as follows:

• First, in Sections II and III we introduce the HJ
reachability theory relevant to our paper, and all the
definitions needed for our proposed HJ-based system
decomposition.

• Next, in Section IV we present the SCS formulation, our
main theoretical result. We describe how BRSs in lower-
dimensional subspaces can be combined to construct the
full-dimensional BRS exactly.

• Finally, in Section V we present two numerical exam-
ples: a low-dimensional 3D Dubins Car example to val-
idate our theory and a high-dimensional 6D Acrobatic
Quadrotor example that was previously intractable using
standard methods.

II. BACKGROUND

There are several HJ formulations that can compute
BRSs exactly when the system dimensionality is low. Al-
though these methods have been successfully used for lower-
dimensional systems, they become intractable when the
system dimension is greater than approximately five. In this
section, we give a brief overview to provide a starting point
on which we build the new proposed theory.

A. Full System Dynamics

Definition 1: Full system. Let z be the state variable of
the system under consideration. We call this system the “full
system,” or just “system” for short. The evolution of the state
of the full system satisfies the ordinary differential equation
(ODE)

dz

ds
= ż = f(z, u), s ∈ [t, 0]

z ∈ Z, u ∈ U
(1)

For clarity, we assume that the state space Z is Rn,
but our theory also applies to systems with periodic state
dimensions such as angles. The control is denoted by u,
with the control function u(·) being drawn from the set of
measurable functions1:
u(·) ∈ U(t) = {φ : [t, 0]→ U : φ(·) is measurable} (2)

The system dynamics f : Z × U → Z is assumed to be
uniformly continuous, bounded, and Lipschitz continuous in
z for fixed u. With this assumption, given u(·) ∈ U, there
exists a unique trajectory solving (1) [20], [21].

We will denote solutions, or trajectories of (1) start-
ing from some state z at time t under control u(·) as
ζ(s; z, t, u(·)). The system trajectory satisfies an initial con-

1A function f : X → Y between two measurable spaces (X,ΣX) and
(Y,ΣY ) is said to be measurable if the preimage of a measurable set in
Y is a measurable set in X , that is: ∀V ∈ ΣY , f

−1(V ) ∈ ΣX , with
ΣX ,ΣY σ-algebras on X ,Y .

dition and the ODE (1) almost everywhere:

d

ds
ζ(s; z, t, u(·)) = f(ζ(s; z, t, u(·)), u(s))

ζ(t; z, t, u(·)) = z
(3)

B. Backward Reachable Set

In this paper, we consider a common definition of the
BRS relevant for guaranteeing safety. Intuitively, the BRS
represents the set of states z from which the system can
be driven into an unsafe set L at a particular time. For our
definition of BRS, we stipulate that the system be driven to
L for all control functions u(·). In this case, the unsafe set
can often be interpreted as a set of states to be avoided (such
as an obstacle), and the BRS represents the set of states that
leads to the system entering the unsafe set despite all possible
control functions. We now formally define the BRS.

Definition 2: Backward reachable set. We denote the
BRS V(t), and define it as follows:

V(t) = {z ∈ Z : ∀u(·) ∈ U, ζ(0; z, t, u(·)) ∈ L} (4)

C. The Full Formulation for Computing the BRS

There are various similar HJ formulations such as [1],
[2], [4], and [22] that cast the reachability problem as an
optimal control problem and directly compute the BRS in
the full state space of the system. These numerical solutions
to the optimal control problem involve solving an HJ PDE
on a grid that represents a discretization of the state space.
Although these methods are not scalable beyond relatively
low-dimensional systems, they form the foundation on which
we will build our theory. We now briefly summarize the
necessary details related to the HJ PDEs, and what their
solutions represent in terms of the cost function and value
function of the corresponding optimal control problem.

Let the unsafe set L ⊆ Z be represented by the implicit
surface function l(z) such that the unsafe set is the zero
sub-level set of the implicit surface function: L = {z ∈ Z :
l(z) ≤ 0}. Such a function always exists since we can choose
l(·) to be the signed distance function from L. Examples of
implicit surface functions are shown as colored surfaces in
Fig. 1, with the boundary of the corresponding sets they
represent shown in black.

Consider the optimal control problem given by

V (t, z) = max
u(·)∈U

l(ζ(0; z, t, u(·)))

subject to (3)
(5)

with the optimal control being given by
u∗(·) = arg max

u(·)∈U
l(ζ(0; z, t, u(·))) (6)

It is well-known that the value function V (t, z) is the
implicit surface function representing V(t): V(t) = {z ∈
Z : V (t, z) ≤ 0}.

The value function V (t, z) is the viscosity solution [23],
[24] of the HJ PDE

DsV (s, z) +H(z,∇V (s, z)) = 0, s ∈ [t, 0]

V (0, z) = l(z)
(7)



Fig. 1: A simple 2D example illustrating HJ reachability. The
boundary of the unsafe set L in the state space is shown as
the solid black line. The blue surface represents the implicit
surface function l(z) of the unsafe set, which by (7) is
equivalent to V (0, z). The light gray surface shows the value
function at some t < 0: V (t, z). The corresponding BRS
V(t) is the zero sub-level set of this function; the boundary
of V(t) is seen here as the dashed black line. If the system
remains outside of the BRS at t < 0, it is guaranteed to not
enter the unsafe set at t = 0.

The Hamiltonian in (7) is given by

H(z, p) = max
u∈U

p · f(z, u) (8)

Fig. 1 shows an illustration of HJ reachability. l(z),
the implicit surface function representing L, and the value
function V (t, z), the implicit surface function representing
the BRS V(t), are shown as the blue and light gray surfaces
respectively. The unsafe set L and the BRS V(t) are the zero
sub-level sets of these two surface functions; the boundaries
of L and V(t) are shown in black. Once the value function
V is computed, the optimal control (6) can be obtained by
the expression

u∗(s) = arg max
u∈U
∇V (s, z) · f(z, u) (9)

We state the following algorithm for clarity and conve-
nience:

Algorithm 1: Full formulation. Given an unsafe set L
and dynamics (1), the full formulation for computing the
BRS is given by the following algorithm:

1) Define the implicit surface function l(z).
2) Solve (7) with Hamiltonian (8) to obtain V (t, z), the

implicit surface function representing V(t).

III. PROBLEM FORMULATION

In this paper, we seek to obtain the BRS in Definition
2 via computations in a lower-dimensional subspace under
the assumption that the system (1) can be decomposed into
SCSs. Such a decomposition can be commonly found, since
many systems involve components that are loosely coupled.
In particular, in the dynamics of many vehicles, the evolution

of the position variables is often weakly coupled though other
variables such as heading.

We now proceed with some essential definitions required
to precisely state our main results.
A. Definitions

1) Subsystem Dynamics: Let the system z ∈ Z = Rn be
partitioned as follows:

z = (y1, y2, y3)

y1 ∈ Rn1 , y2 ∈ Rn2 , y3 ∈ Rn3

n1, n2 > 0, n3 ≥ 0

(10)

Note that n3 could be zero, and n1+n2+n3 = n. We call
the variables yi the “state partitions”, or just “partitions”, of
the system.

Define the SCS states x1 ∈ X1 = Rn1+n3 , x2 ∈ X2 =
Rn2+n3 as follows:

x1 = (y1, y3)

x2 = (y2, y3)
(11)

It is important to note that x1 and x2 in general have
overlapping states in the partition y3. Note that our theory
is applicable to any finite number of subsystems defined in
the analogous way; however, for clarity and without loss of
generality, in this paper we will assume that there are two
subsystems.

For convenience, we have assumed that X1 =
Rn1+n3 ,X2 = Rn2+n3 , but as previously mentioned, our
theory also applies to systems with periodic state dimensions.

Definition 3: Self-contained subsystem. We call each of
the systems with states xi evolving according to (12) a “self-
contained subsystem” (SCS), or just ”subsystem” for short.
dx1
ds

= ẋ1 = g1(x1, u1) = g1(y1, y3, u1), s ∈ [t, 0]

dx2
ds

= ẋ2 = g2(x2, u2) = g1(y2, y3, u2)

u1 ∈ U1,u2 ∈ U2

(12)

Intuitively (12) means that the evolution of states in each
subsystem depend only on the states in that subsystem: for
example, the evolution of x1 depends only on the states in
x1. However, the two subsystems are coupled through the
state partition y3. Note that the subsystem controls u1 and
u2 depend on how the control inputs appear in subsystem
states x1 and x2, and may not exist in some subsystems. For
example, consider the dynamics of a Dubins Car: ṗx

ṗy
θ̇

 =

 v cos θ
v sin θ
ω

 (13)

with state z = (px, py, θ) and control u = ω. The state
partitions are y1 = px, y2 = py, y3 = θ. The subsystems xi
and the subsystem controls ui are

ẋ1 =

[
ẏ1
ẏ3

]
=

[
ṗx
θ̇

]
=

[
v cos θ
ω

]
ẋ2 =

[
ẏ2
ẏ3

]
=

[
ṗy
θ̇

]
=

[
v sin θ
ω

]
u1 = u2 = ω = u

(14)



where the overlapping state is θ = y3.

The subsystem control signal spaces U1,U2 and control
function spaces U1,U2 are defined appropriately according
to the full system control signal and function spaces U and
U based on how the control enters the dynamics of the
subsystems. For another example of a system decomposed
into two self-contained subsystems, see (34) and (35).

Although there may be common or overlapping states in
x1 and x2, the evolution of each subsystem does not depend
on the other explicitly. In fact, if we for example entirely
ignore the subsystem x2, the evolution of the subsystem x1
is well-defined and can be considered a full system on its
own; hence, each subsystem is self-contained.

2) Projection Operators: Define the projection of a state
z onto a subsystem state space Xi as

projXi(z) = xi, i = 1, 2 (15)

For convenience, we will define the projection operator
applied on sets S ⊆ Z:

projXi(S) = {xi ∈ Xi : ∃z ∈ S, projXi(z) = xi} (16)

Since we will aim to relate the BRSs of the subsystems to
the BRS of the full system, we also define the back projection
operator as

proj−1(xi) = {z ∈ Z : projXi(z) = xi} (17)

We will also apply the back projection operator on sets. In
this case, we abuse notation and define the back projection
operator on some set Si ⊆ Xi as

proj−1(Si) = {z ∈ Z : ∃xi ∈ Si, projXi(z) = xi} (18)

Fig. 2 and 3 illustrate the definitions involving projections.
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Fig. 2: Projection of a point z onto the lower-dimensional
subspaces in the z2-z3 plane and the z1-z3 plane.

Fig. 3: Back projection of sets in the z2-z3 plane and the
z1-z3 plane into the 3D space.

3) Subsystem Trajectories: Since each subsystem in (12)
is self-contained, we can denote the subsystem trajectories
ξi(s;xi, t, ui(·)). The subsystem trajectories satisfy the sub-
system dynamics and initial condition:

d

ds
ξ(s;xi, t, ui(·)) = gi(ξ(s;xi, t, ui(·)), ui(s))

ξi(t;xi, t, ui(·)) = xi

(19)

The full system trajectory and subsystem trajectories are
simply related to each other via the projection operator:

projXi(ζ(s; z, t, u(·)) = ξi(s;xi, t, ui(·)) (20)

where xi = projXi(z).

B. Goals of This Paper

We assume that the full system unsafe set L can be written
in terms of the subsystem unsafe sets Lx1 ∈ X1,Lx2 ∈ X2

in the way depicted in Fig. 3:

L = proj−1(Lx1
) ∩ proj−1(Lx2

) (21)

where the full unsafe set is the intersection of the back
projections of subsystem unsafe sets. In practice, this is not
a strong assumption since many obstacles can be accurately
modeled as rectangular prisms in position space, or hyper-
rectangles in the full state space. In fact, the unsafe set
described by (21) turns out to only be rectangular in the
non-overlapping states, and can be arbitrarily shaped in the
overlapping states. In addition, such an assumption is reason-
able since the full-dimensional unsafe set should at least be
representable in some way in the lower-dimensional spaces.
However, in the worst case, taking Lxi = projXi(L) always
leads to a conservative approximation of the constructed BRS
that over-approximates the true BRS. Also note that with the
definition in (21), we have that projXi(L) = LXi .

Next, we define the subsystem BRSs Vx1
,Vx2

the same
way as in (4), but with the subsystems in (12) and subsystem
unsafe sets Lx1 ,Lx2 , respectively:

Vxi(t) = {xi : ∀ui(·) ∈ Ui, ξi(0;xi, t, ui(·)) ∈ Lxi} (22)



Given a system in the form of (12) with unsafe set that
can be represented by (21), our goal is to compute the
full-dimensional BRS by performing computations in the
lower-dimensional subspaces. Specifically, we would like to
first compute the subsystem BRSs Vx1

(t),Vx2
(t), and then

construct the full system BRS V(t) exactly. This process dra-
matically reduces computation complexity by decomposing
the higher-dimensional system into two lower-dimensional
subsystems. Specifically, we will show that if the unsafe set
can be decomposed in the way described by (21), then the
full-dimensional BRS is decomposable in the same way:

V(t) = proj−1(Vx1
(t)) ∩ proj−1(Vx2

(t)) (23)

It is important to note that if the subsystem states x1, x2
have no overlapping states (and are therefore decoupled),
the above statement is relatively intuitive and easy to show;
however, when the subsystems have the overlapping states in
the partition y3, they are coupled to each other through these
overlapping states. Our main result in this paper proves that
despite this coupling, (23) still holds.

IV. SELF-CONTAINED SUBSYSTEMS

With the background and definitions established, we now
show the main result in a theorem, which relates lower-
dimensional BRSs to the full-dimensional BRS we would
like to compute. The consequence of the theorem is that
for systems of the form (12), one can obtain the exact full-
dimensional BRS by first computing the lower-dimensional
BRSs VXi , and then constructing the full-dimensional BRS
V(t) via (23). We first prove a lemma involving a key
property of the projection operator.

Lemma 1: Let z̄ ∈ Z, x̄i = projXi(z̄),Si ⊆ Xi for some
subsystem i. Then,

x̄i ∈ Si ⇔ z̄ ∈ proj−1(Si) (24)
Proof: Forward direction: Suppose x̄i ∈ Si, then

trivially ∃xi ∈ Si, projXi(z̄) = xi (the xi that “exists” is
just x̄i itself). By the definition of back projection in (18),
we have z̄ ∈ proj−1(Si).

Backward direction: Suppose z̄ ∈ proj−1(Si), then by
the definition of back projection in (18), we have ∃xi ∈
Si, projXi(z̄) = xi.

Let such an xi ∈ Si be denoted x̂i, and suppose x̄i /∈ Si.
Then, we must have x̂i 6= x̄i, which is a contradiction, since
x̄i = projXi(z̄) = x̂i.

Corollary 1: If S = proj−1(S1) ∩ proj−1(S2), then

z̄ ∈ S ⇔ ∀i, x̄i ∈ Si (25)
We now use Lemma 1 and Corollary 1 to prove our main

result.
Theorem 1: System decomposition for computing the

BRS. Suppose that the full system in (1) can be decomposed
into the form of (12), then

L = proj−1(Lx1
) ∩ proj−1(Lx2

)

⇒ V(t) = proj−1(Vx1
(t)) ∩ proj−1(Vx2

(t))
(26)

Proof 1: We will prove Theorem 1 by proving the follow-
ing equivalent statement:

z̄ ∈ V(t)⇔ z̄ ∈ proj−1(Vx1
(t)) ∩ proj−1(Vx2

(t)) (27)

By the definition of BRS in (4), we have

z̄ ∈ V(t)⇔ ∀u(·) ∈ U, ζ(0; z̄, t, u(·)) ∈ L (28)

Consider the property (20), and let

x̄i = projXi(z̄)

ξi(0; x̄i, t, ui(·)) = projXi(ζ(0; z̄, t, u(·)))
(29)

Noting that L = proj−1(Lx1) ∩ proj−1(Lx2) and using
Corollary 1, we have the following equivalent statement in
terms of the subsystem trajectories:

∀i,∀ui(·), ξi(0; x̄i, t, ui(·)) ∈ Lxi (30)

which, by the definition of the subsystem BRS (22), is in
turn equivalent to

∀i, x̄i ∈ Vxi(t) (31)

By Lemma 1, this is equivalent to

∀i, z̄ ∈ proj−1(Vxi(t)) (32)
With the above theorem, we now summarize our main

theoretical result and its consequences with the following
algorithm:

Algorithm 2: SCS formulation. Given an unsafe set L
that can be decomposed as L = proj−1(Lx1

) ∩ proj−1(Lx2
)

and SCSs with dynamics in the form (12), the HJ-based SCS
formulation for computing the BRS is given in the following
algorithm:

1) Define the implicit surface functions representing the
subsystem unsafe sets Lx1 ,Lx2 .

2) Repeat for i = 1, 2: For ith SCS, compute its BRS by
solving (7) in the space of Xi.

3) Construct the full-dimensional BRS as follows: V(t) =
proj−1(Vx1

(t)) ∩ proj−1(Vx2
(t)). By Theorem 1, the

full-dimensional BRS is exactly constructed.

V. NUMERICAL EXAMPLES

We now present two numerical examples to illustrate our
method. For each example, we present a common dynamical
system that can be decomposed into the form of (12).
The first example, the 3D Dubins Car, illustrates that our
decomposition method produces the exact full-dimensional
BRS at a substantially lower computation cost. The second
example, the 6D Acrobatic Quadrotor, demonstrates that our
technique enables the exact computation of a BRS that was
previously intractable to compute with the full formulation.

A. Dubins Car

The Dubins Car is a well-known system whose dynamics
are given by (13). This system is only 3D, and its BRS can be
tractably computed in the full-dimensional space, so we use
it to compare the full formulation with the SCS formulation.



Fig. 5: Comparison of the Dubins Car BRS V(t), t = 0.5
computed using the full formulation and the SCS formula-
tion, viewed at a few different angles.

As previously mentioned, the Dubins Car dynamics can
be decomposed according to (14).

For this example, we computed the BRS from the unsafe
set representing the set of positions near the origin in both the
px and py dimensions. More concretely, our unsafe set was
defined to be L = {(px, py, θ) : |px|, |py| ≤ 0.5}. Such an
unsafe set can be used to model an obstacle that the vehicle
must avoid. Given the unsafe set, the interpretation of the
BRS V(t) is the set of states from which a collision with the
obstacle may occur after a duration of t.

From L, we computed the BRS V(t) of time horizon t =
0.5. The resulting full formulation BRS is shown in Fig. 4
as the red surface which appears in the two subplots on the
right.

To compute the BRS using the SCS formulation, note
that the unsafe set L can be written as L = proj−1(Lx1) ∩
proj−1(Lx2

), with

Lx1
= {(px, θ) : |px| ≤ 0.5}

Lx2
= {(py, θ) : |py| ≤ 0.5}

(33)

From these lower-dimensional unsafe sets, we computed
the lower-dimensional BRSs VX1

(t) and VX2
(t), and then

constructed the full-dimensional BRS V(t) using Theorem
1: V(t) = proj−1(Vx1

(t)) ∩ proj−1(Vx2
(t)). The subsystem

BRSs and their back projections are shown in magenta and
green in the left subplot of Fig. 4. The constructed BRS is
shown in the three left subplots of Fig. 4 as the black mesh.

In the middle-right plot of Fig. 4, we superimpose the
full-dimensional BRS computed using the two methods. We
show the comparison of the computation results viewed from
several different angles in Fig. 5. The results are indistin-
guishable. However, when using the SCS formulation, The-
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Fig. 6: Computation time of the full formulation and the
SCS formulation in linear and log scale for the Dubins Car
example. In the full formulation, the BRS is computed in
a 3D state space, causing the computation time to increase
rapidly with the number of grid points per dimension. In
contrast, in the SCS formulation, the BRS is computed
in a 2D space, and the computation time is negligible in
comparison.

orem 1 allows the computation to be done significantly faster
in lower-dimensional subspaces. An additional benefit of the
SCS formulation is that in the numerical methods for solving
the HJ PDE, the amount of numerical dissipation increases
with the number of state dimensions. Thus, computations in
lower-dimensional subspaces lead to a slightly more accurate
numerical solution.

The computation benefits of using the SCS formulation
can be seen from Fig. 6. Both subplots show the compu-
tation time in seconds versus the number of grid points
per dimension in the numerical computation. From the top
subplot, one can easily see that the direct computation of the
full formulation BRS in 3D becomes very time-consuming
as the number of grid points per dimension is increased,
while the computation using the SCS formulation hardly
takes any time in comparison. The bottom subplot shows the
same data, but on a log-log scale for more detail. Directly
computing the BRS with 251 grid points per dimension using
the full formulation took approximately 80 minutes, while
computing the BRS using the SCS formulation is faster
by several orders of magnitude: the computation only took
approximately 30 seconds! The computations were timed on
a desktop computer with an Intel Core i7-2600K processor
and 16GB of random-access memory.

B. The 6D Acrobatic Quadrotor

This example illustrates the ability of the SCS formulation
to produce BRSs for high-dimensional systems that would
be otherwise intractable to analyze by current HJ-based
methods. In [25], a 6D Acrobatic Quadrotor model used
to perform backflips was simplified into a series of smaller
hybrid models due to the intractability of computing a BRS



over a 6D state space. Using the new SCS formulation we
can accurately compute a BRS for the full 6D system.

The 6D Acrobatic Quadrotor’s state is z =
(px, vx, py, vy, φ, ω); the dynamics are given by [25]:

ṗx

v̇x

ṗy

v̇y

φ̇

ω̇


=



vx
−CvDvx
m

vy
−(mg+CvD)vy

m

ω

−CφDω
Iyy


+



0 0

− sinφ
m

− sinφ
m

0 0

cosφ
m

cosφ
m

0 0

−l
Iyy

l
Iyy



T1
T2

 (34)

where px, py , and φ represent the quadrotor’s horizontal, ver-
tical, and rotational positions, respectively. Their derivatives
represent the velocity with respect to each corresponding
positional state. The inputs T1 and T2 represent the thrust
exerted on either end of the quadrotor, and the constant
system parameters are m for mass, CvD for translational drag,
CφD for rotational drag, g for acceleration due to gravity, l
for the length from the quadrotor’s center to an edge, and
Iyy for moment of inertia.

The state partitions of this system are y1 = (px, vx), y2 =
(py, vy), y3 = (φ, ω). Using the SCS formulation, we decom-
pose the full system into the following set of subsystems:

x1 =

y1
y3

 =


px

vx

φ

ω

 x2 =

y2
y3

 =


py

vy

φ

ω


u1 = u2 =

T1
T2

 = u

(35)

For this example we will compute the BRS that describes
the set of initial conditions from which the system may
enter the unsafe set after a given time period t despite
best possible control. We define the unsafe set as a square
of length 1m centered at (px, py) = (0, 0) described by
L = {(px, vx, py, vy, φ, ω) : |px|, |py| ≤ 1}. This can be
interpreted as a positional box centered at the origin that must
be avoided for all angles and velocities. From the unsafe set,
we define l(z) such that l(z) ≤ 0 ⇔ x ∈ L. This unsafe
set must be decomposed to provide a suitable unsafe set for
each subsystem. This is done by letting Lxi , i = 1, 2 be

Lx1
= {(px, vx, φ, ω) : |px| ≤ 1}

Lx2
= {(py, vy, φ, ω) : |py| ≤ 1}

(36)

The BRS of each 4D subsystem is computed and then
combined into the 6D BRS using the SCS formulation. To
visually depict the 6D BRS, 3D slices of the BRS along the
positional and velocity axes were computed. Fig. 7 shows a
3D slice in (px, py, φ) space at vx = vy = 1 m/s, ω = 0
rad/s. The dark blue set represents the unsafe set L, with the
BRS in light blue.

Fig. 7: 3D slice of the constructed 6D BRS at vx = vy = 1
m/s, ω = 0 rad/s. The unsafe set is in dark blue, with the
BRS in light blue.

In Fig. 8, 3D slices in (vx, vy, ω) space are visualized at
px, py = 1.5 m, φ = 1.5 rad. These colored sets represent
the BRS at different points in time.

Fig. 8: 3D slices of the constructed 6D BRS at px, py = 1.5
m, φ = 1.5 rad at different points in time. The sets become
darker as t becomes more negative.

VI. CONCLUSIONS AND FUTURE WORK

The SCS formulation that we proposed for computing
BRSs significantly reduces computation burden, and makes
many previously intractable computations possible. At the
same time, the computation savings do not come at the cost
of optimality: the full-dimensional BRS can be computed
exactly in lower-dimensional subspaces. The construction of
the full-dimensional BRS from lower-dimensional BRSs is
exact even when the subsystem dynamics are coupled.

The SCS formulation will be the basis for future system
decomposition methods, for which we already have several
other preliminary theoretical results. These results include
other definitions of BRSs, such as those used for reaching,
instead of avoiding, a set; incorporation of disturbances into
the problem formulation; and treatment of reachable tubes.



In the future, we plan to apply the theory to a larger number
of practical systems in these different settings.
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Fig. 4: Comparison of the Dubins Car BRS V(t), t = 0.5 computed using the full formulation and the SCS formulation. Left:
BRSs in the lower-dimensional subspaces and how they are combined to form the full-dimensional BRS. Middle-left: BRS
computed using the SCS formulation. Middle-right: BRSs computed using the full formulation and the BRS formulation
superimposed on each other, showing that they are indistinguishable. Right: BRS computed using the full formulation.


